模具设计与制造前景
从技术角度来看,模具技术(包括设计、加工、制造)大致可分为五个发展阶段:手工操作阶段、手工操作加机械化(普通通用机床与工具)阶段、数字控制阶段、计算机化阶段和CAD/CAE/CAM信息网络技术一体化阶段,模具网CEO、深圳市模具技术学会专家委员罗百辉日前接受某杂志专访表示,在信息化带动工业化发展的今天,中国的模具设计加工和制造技术正在赶超国际水平,企业管理技术接轨于国际水平,但中国模具行业企业全体职工必须努力学习,牢牢掌握世界模具技术的发展方向,充分发挥主观能动性,脚踏实地、充满信心地创造美好的未来。
一、模具设计技术的发展趋势
模具设计长期以来依靠人的经验和机械制图来完成。自从二十世纪八十年代中国发展模具计算机辅助设计(CAD)技术以来,这项技术已获得认可,并且得到来快的发展。九十年代开始发展的模具计算机辅助工程分析(CAE)技术,现在也为许多企业应用,它对缩短模具制造周期及提高模具质量有显着的作用。据模具网CEO、深圳市模具技术学会专家委员罗百辉分析,近年来模具CAD/CAM技术的硬件与软件价格已降低到中小企业普遍可以接受的程度,为其进一步普及创造了良好的条件;基于网络的CAD/CAM/CAE一体化系统结构初见端倪,其将解决传统混合型CAD/CAM系统无法满足实际生产过程分工协作要求的问题;CAD/CAM软件的智能化程度将逐步提高;塑料制件及模具的3D设计与成型过程的3D分析将在我国模具工业中发挥越来越重要的作用。罗百辉认为,就大多数模具制造企业而言,今后的发展方向应以提高数控化和计算机化水平为主,积极采用高新技术,逐步走向CAD/CAE/CAM信息网络技术一体化。模具无纸化制造将逐渐替代传统的设计和加工。
模具设计技术及CAD和CAE软件,今后应提高在下列几方面的水平:
*模具设计资料库和知识库系统;
*模具工程规划及方案设计;
*模具材料和标准件的合理选用;
*模具刚性、强度、流道及冷却通路的设计;
塑料模具塑料成形过程的各种模拟分析(注塑成形,包括塑料充模、保压、冷却、翘曲、收缩、纤维取向等模拟分析)、热传导和冷却过程的分析、凝固及结构应力分析等。计算浇注系统及模腔的压力场、温度场、速度场、剪切应变速率场和剪切应力场的分布并分析其结果,是非常复杂和费时的。这一模拟技术已从中面流技术发展到双面流技术,不久即可发展到既正确又快速的实体流技术,产生满足塑料件虚拟制造要求的三维注塑流动模拟软件;
*压模金属成形过程的模拟、起皱及破裂分析、应力应变和回弹分析等;
*压铸模压铸件成形流动模拟、热传导及凝固分析等;
*锻模锻件成形过程模拟及金属流动和充填分析等;
*提高设计和分析软件的快速性、智能化和集成化水平,并强化它们的功能,以适应模具的不断发展。
除了模具CAD/CAE技术之外,模具工艺设计也非常重要。计算机辅助工艺设计(CAPP)技术已开始在中国模具企业中应用。由于大部分模具都是单件生产,其工艺规程有别于批量生产的产品,因此应用CAPP技术难度较大,也难以有适合各类模具和不同模具企业的CAPP软件。为了较好地应用CAPP技术,模具企业必须做好开发和研究。虽然CAPP技术应用和推广的难度比CAD和CAE为高,但也必须重视这一发展方向。
基于知识的工程(KBE)技术是面向现代设计决策自动化的重要工具,已成为促进工程设计智能化的重要途径,近年来受到重视,将对模具的智能、优化设计产生重要的影响。
二、模具加工技术的发展趋势
罗百辉把中国的模具分为10大类46小类。不同类型的模具有不同的加工方法,同类模具也可以用不同加工技术去完成。模具加工的工作主要集中在模具型面加工、表面加工和装配,加工方法主要有精密铸造、金属切削加工、电火花加工、电化学加工、激光及其它高能波束加工,以及集两种以上加工方法为一体的复合加工等。数控和计算机技术的不断发展,使它们在许多模具加工方法中得到来广泛的应用。在工业产品品种多样化及个性化日益明显,产品更新换代来快,市场竞争来激烈的情况下,用户要求模具制造交货期短、精度高、质量好、价格低,带动模具加工技术向以下几方面发展。
1、高速铣削技术
近年来中国模具制造业一些骨干重点企业,先后引进高速铣床和高速加工中心,它们已在模具加工中发挥了很好的作用。当前国外高速加工机床主轴的最高转速已超过100000r/min,快速进给速度可达120m/min,加速度可达1-2g,换刀时间可提高到1-2s。这样可大幅度提高加工效率,并可获得 Ra≤1的加工表面粗糙度,可切削60HRc以上的高硬度材料,给电火花成形加工带来挑战。随主轴转速的提高,机床结构及其所配置的系统及关键部件和零配件、刀具等都必须配合,令机床造价大为提高。中国进口的高速加工机床主轴最高转速在短期内仍将以10000-20000r/min为主,少数会达到 40000r/min左右。虽然向更高转速发展是必然方向,但目前最主要的还是推广应用。
高速加工是切削加工工艺的革命性变革,从技术发展角度看,高速铣削正与超精密加工、硬切削加工相结合,开辟了以铣代磨的领域,并大大地减轻了模具的研抛工作量,缩短了模具制造周期,在中国模具企业的应用将会来多。并联机床,又称虚拟轴机床,和3D激光6轴铣床的诞生,及开放式数控系统的应用更为高速加工增添光彩。
2、电火花加工技术
电火花加工(EDM)虽然已受到高速铣削的严峻挑战,但是EDM技术的一些固有特性和独特的优点,是高速铣削所不能完全替代,例如模具的复杂型面、深窄小型腔、尖角、窄缝、沟漕、深坑等处的加工。虽然高速铣削也能满足上述部分加工要求,但成本比EDM高得多。较之铣削加工,EDM更易实现自动化。复杂、精密小型腔及微细型腔和去除刀痕、完成尖角、窄缝、沟漕、深坑加工及花纹加工等,将是今后EDM应用的重点。为了在模具加工中进一步发挥其独特的作用,以下是EDM今后的发展方向:
* 不断提高EDM的效率、自动化程度和加工的表面完整性;
* EDM设备的精密化和大型化;
* EDM设备的加工稳定性、容易操作及优良的性能价格比;
* 满足不同要求的高效节能及反电解等新型脉电源的研发,电源波形检测及其处理和控制技术的发展;
* 高性能综合技术专家系统的研发及EDM智能化技术的不断发展和自适应控制、模糊控制、多轴联动控制、电极自动交换、双线自动切换、防电解作用及放电能量分配等技术的进一步发展;
* 混粉加工等镜面光亮加工技术的发展;
* 微细EDM技术的发展,包括三维微细轮廓的数控电火花铣削加工和微细电火花磨削及微细电火花加工技术等;
* WEDM中人工智能技术的运用、走丝系统和穿丝技术的改进等;
* 电火花铣削加工技术及机床和EDM加工中心(包括成型机和线切割机)将得到发展;
* 作为可持续发展战略,绿色EDM新技术是未来重要发展趋势。
3、快速原型制造(RPM)和快速制模(RT)技术
模具未来的最大竞争因素,是如何快速地制造出用户所需的模具。RPM技术可直接或间接用于RT。金属模具快速制造技术的目标,是直接制造可用于工业化生产的高精度耐久金属硬模。间接法制模的关键技术是开发短流程工艺、减少精度损失、低成本的层积和表面光整技术的集成。RPM技术与RT技术的结合,将是传统快速制模技术(如中低熔点合金铸造、喷涂、电铸、精铸、层、橡胶浇固等)进一步发展的方向。RPM技术与陶瓷型精密铸造相结合,为模具型腔精铸成形提供了新途径。应用RPM/RT技术,从模具的概念设计到制造完成,仅为传统加工方法所需时间的1/3和成本的1/4左右,具有广阔的发展前景。要进一步提高 RT技术的竞争力,需要开发数据和加工数据生成更容易、高精度、尺寸及材料限制小的直接快速制造金属模具的方法。
4、超精密加工、微细加工和复合加工技术
随模具向精密化和大型化方向发展,超精密加工、微细加工和集电、化学、超声波、激光等技术于一体的复合加工将得到发展。目前超精密加工已稳定地达到亚微米级,纳米精度的超精密加工技术也被应用到生产。电加工、电化学加工、束流加工等多种加工技术,已成为微细加工技术的重要组成部分,国外更有用波长仅0.5 纳米的辐射波制造出的纳米级塑料模具。在一台机床上使激光铣削和高速铣削相结合,已使模具加工技术得到新发展。
5、先进表面处理技术
模具热处理和表面处理,是能否充分发挥模具材料性能的关键。真空热处理、深冷处理、包括PVD和CVD技术的气相沉积(TiN、TiC等)、离子渗入、等离子喷涂及TRD表面处理技术、类钻石薄膜覆盖技术、高耐磨高精度处理技术、不沾粘表面处理等技术已在模具制造中应用,并呈现良好的发展前景。模具表面激光热处理、焊接、强化和修复等技术及其它模具表面强化和修复技术,也将受到进一步重视。
6、模具研磨抛光
模具的研磨抛光目前仍以手工为主,效率低、劳动强度大、质量不稳定。中国已引进了可实现三维曲面模具自动研抛的数控研磨机,自行研究的仿人智能自动抛光技术已有一定成果,但目前的应用很少,预计会得到发展。今后应继续注意发展特种研磨与抛光技术,如挤压珩磨、激光珩磨和研抛、电火花抛光、电化学抛光、超声波抛光以及复合抛光技术与工艺装备。
7、模具自动加工系统
随各种新技术的迅速发展,国外已出现模具自动加工系统。模具自动加工系统应有以下特征:多台机床合理组合;配有随行定位夹具或定位盘;有完整的夹具和刀具数控库;有完整的数控柔性同步系统以及有质量监测控制系统。也有人称同时完成粗加工和精加工的机床为模具加工系统。这些今后都会得到发展。
8、模具CAM/DNC技术及软件
随数控技术和计算机技术的快速发展,CAM/DNC技术已在中国模具企业得到广泛应用。目前众多软件中,针对模具加工特点而开发的专用软件不多,针对高速加工的软件也少。适应模具加工特点、具有高水平数控加工能力和后处理程序、有完善的精密加工和高速加工功能、界面友好、简单易学、备有多种数据格式转换功能和能为系统集成准备条件的软件将是今后发展的方向。
除上述发展方向,还有切削加工刀具的正确选用。据统计,刀具占模具生产总成本的3-5%,如果能正确选用刀具,可提高生产效率20%以上。
三、模具制造综合技术的发展趋势
在模具制造中,模具设计和模具加工往往不能分割。因此,除了设计技术和加工技术之外,还必须重视一些综合技术,其发展方向将对模具制造产生重大影响。目前,以微电子技术、软件技术为核心,以数字化、网络化为特征的信息技术,正以强大的渗透力影响社会各个领域,传统制造业信息化势在必行。
1、模具CAD/CAE/CAM一体化技术
模具CAD/CAE/CAM技术已发展成为比较成熟的共性技术,硬件和软件的价格已降到中小企业普遍可以接受的水平,再加上微机的普及和应用及微机版软件的推出,模具行业普及CAD/CAM的条件已经成熟,今后必将迅速发展。模具CAD/CAE/CAM一体化及软件的宜人化、集成化、智能化、网络化将是今后的发展方向。有条件的企业应积极做好CAD/CAE/CAM技术的深化应用工作,即应用KBE技术和开展企业信息化工程。可以从 CAPP→PDM→CIMS→VM逐步深化和提高,也有不少人认为推行C3P CAD/CAE/CAM/PDM)技术可能更有效。
2、精密测量和高速扫描及数字化系统
随高精密模具的发展,模具测量技术显得来重要。模具应力、磁力测量技术和三维测量技术及R部位形状尺寸精度、表面粗糙度测量技术等都是模具测量技术的重点所在。面世不久的4D激光测量机可以自标定,不但能进行3D测量,而且可以得出质量指标,说明每个测量点的精确性。数控加工过程的在线激光测量,不但有助于保工件的加工质量,而且大大提高NC机床的运转安全。高速扫描机和模具扫描系统提供了从模型或实物扫描,到加工出期望的模型所需的多项功能,可大大缩短模具制造周期。逆向工程和并行工程将在今后的模具生产中,发挥来重要的作用。
3、模具标准化程度不断提高
正确合理地选用模具标准件和提高模具标准化程度,可以有效缩短模具制造周期、提高质量和降低成本,因此,模具标准化程度将不断提高。
4、虚拟技术将得到发展
计算机和信息网络的发展,使虚拟技术成为现实。虚拟技术可以形成虚拟空间环境,既实现企业内模具虚拟装配等工作,也可在企业之间实现虚拟合作设计、制造、合作研究开发,以致建立虚拟企业。
5、管理技术迅速发展
机械行业中常说的“三分技术七分管理”说明了管理的重要性。模具企业中现代企业制度和各项创新机制的建立和运行,既是管理技术的核心,也是模具制造成功和企业发展的保。模具制造管理信息系统(MIS)、产品信息管理(PDM)、建立因特网平台作为企业沟通和联系的手段及模具制造电子商务系统(EC)虽然不是本文的讨论围,但它们也是模具企业管理技术的发展方向,受到业界的重视。 另:请给个满意答案,我做任务
机械行业什么方向最挣钱?
机器维修
模具制造
我接触的是模具行业所以我给你谈谈我的建议,
做模具的常用机械有:铣床、车床、磨床、钻床、CNC、线切割(快/慢走私)、电火花、激光焊、激光雕等。
打工的话要么是开这些常用机械了,要么就做模具设计,开机床都是看你技术和经验的,工资相差不会很大,差太多没人愿意做就会涨工资的,搞设计也需要大量实践经验结合实际,相对来说同样的经验,搞设计工资要高一点。开机床的话,慢走丝是空调车间,精密CNC也是空调车间,快走丝特别脏,CNC加工模具相对比较轻松加工产品比较累,其它都差不多看你自己兴趣了
如果你资金充足,以后可以自己创业的话,给你推荐几个加工单价高的机器:慢走丝、激光焊、激光雕、CNC,(比如慢走丝比较好的一台要60来万哦、激光焊比较好的10多万一台)
如果以后创业资金比较困难的,推荐做五金冲压模、连续模,这个主要是线切割、小磨床和小台钻,线切割一般的3万左右一台,小钻钻2千来款一台,好点的小磨床也是4万左右一台,很多老板都是做五金模起家的,因为这种模具市场需求量大,但是单价相对比较低,利润空间小,挣钱比较累点。
相对慢走丝、激光焊、激光雕和CNC加工,快走丝、小钻床、小磨床加工就好比是大酒店和别小餐馆的区别一样,但是等有资金了你也可以扩大规模开连锁餐馆,像肯德基和麦当劳一样规模大了一样很赚钱的。
说了这么多要你自己去把握了,打工要选相对舒服的工种,有计划创业就选适合你的工种。
自动控制技术全国及世界现状及发展趋势
工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。
工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。工业控制自动化技术作为20世纪现代制造领域中最重要的技术之一,主要解决生产效率与一致性问题。虽然自动化系统本身并不直接创造效益,但它对企业生产过程有明显的提升作用。
我国工业控制自动化的发展道路,大多是在引进成套设备的同时进行消化吸收,然后进行二次开发和应用。目前我国工业控制自动化技术、产业和应用都有了很大的发展,我国工业计算机系统行业已经形成。目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。
一、 以工业PC为基础的低成本工业控制自动化将成为主流
众所周知,从20世纪60年代开始,西方国家就依靠技术进步(即新设备、新工艺以及计算机应用)开始对传统工业进行改造,使工业得到飞速发展。20世纪末世界上最大的变化就是全球市场的形成。全球市场导致竞争空前激烈,促使企业必须加快新产品投放市场时间(Time to Market)、改善质量(Quality)、降低成本(Cost)以及完善服务体系(Service),这就是企业的T.Q.C.S.。虽然计算机集成制造系统
(CIMS)结合信息集成和系统集成,追求更完善的T.Q.C.S.,使企业实现“在正确的时间,将正确的信息以正确的方式传给正确的人,以便作出正确的决策”,即“五个正确”。然而这种自动化需要投入大量的资金,是一种高投资、高效益同时是高风险的发展模式,很难为大多数中小企业所采用。在我国,中小型企业以及准大型企业走的还是低成本工业控制自动化的道路。
工业控制自动化主要包含三个层次,从下往上依次是基础自动化、过程自动化和管理自动化,其核心是基础自动化和过程自动化。
传统的自动化系统,基础自动化部分基本被PLC和DCS所垄断,过程自动化和管理自动化部分主要是由各种进口的过程计算机或小型机组成,其硬件、系统软件和应用软件的价格之高令众多企业望而却步。
20世纪90年代以来,由于PC-based的工业计算机(简称工业PC)的发展,以工业PC、I/O装置、监控装置、控制网络组成的PC-based的自动化系统得到了迅速普及,成为实现低成本工业自动化的重要途径。我国重庆钢铁公司这样的大企业的几乎全部大型加热炉,也拆除了原来DCS或单回路数字式调节器,而改用工业PC来组成控制系统,并采用模糊控制算法,获得了良好效果。
由于基于PC的控制器被证明可以像PLC一样可靠,并且被操作和维护人员接受,所以,一个接一个的制造商至少在部分生产中正在采用PC控制方案。基于PC的控制系统易于安装和使用,有高级的诊断功能,为系统集成商提供了更灵活的选择,从长远角度看,PC控制系统维护成本低。由于可编程控制器(PLC)受PC控制的威胁最大,所以PLC供应商对PC的应用感到很不安。事实上,他们现在也加入到了PC控制“浪潮”中。
近年来,工业PC在我国得到了异常迅速的发展。从世界范围来看,工业PC主要包含两种类型:IPC工控机和CompactPCI工控机以及它们的变形机,如AT96总线工控机等。由于基础自动化和过程自动化对工业PC的运行稳定性、热插拔和冗余配置要求很高,现有的IPC已经不能完全满足要求,将逐渐退出该领域,取而代之的将是 CompactPCI-based工控机,而IPC将占据管理自动化层。国家于2001年设立了“以工业控制计算机为基础的开放式控制系统产业化”工业自动化重大专项,目标就是发展具有自主知识产权的PC-based控制系统,在3(5年内,占领30%(50%的国内市场,并实现产业化。
几年前,当“软PLC”出现时,业界曾认为工业PC将会取代PLC。然而,时至今日工业PC并没有代替PLC,主要有两个原因:一个是系统集成原因;另一个是软件操作系统Windows NT的原因。一个成功的PC-based控制系统要具备两点:一是所有工作要由一个平台上的软件完成;二是向客户提供所需要的所有东西。可以预见,工业PC与PLC的竞争将主要在高端应用上,其数据复杂且设备集成度高。工业PC不可能与低价的微型PLC竞争,这也是PLC市场增长最快的一部分。从发展趋势看,控制系统的将来很可能存在于工业PC 和 PLC之间,这些融合的迹象已经出现。
和PLC一样,工业PC市场在过去的两年里保持平稳。与PLC相比,工业PC软件很便宜。据Frost Sullivan公司估计,全世界每年7亿美元工业PC市场里,大约8500万美元为控制软件,一亿美元为操作系统。到2007年会翻一番,工业PC市场变得非常可观。
二、 PLC在向微型化、网络化、PC化和开放性方向发展
长期以来,PLC始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与DCS和工业PC形成了三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是工业PC所带来的冲击。
目前,全世界PLC生产厂家约200家,生产300多种产品。国内PLC市场仍以国外产品为主,如Siemens、Modicon、A-B、OMRON、三菱、GE的产品。经过多年的发展,国内PLC生产厂家约有三十家,但都没有形成颇具规模的生产能力和名牌产品,可以说PLC在我国尚未形成制造产业化。在PLC应用方面,我国是很活跃的,应用的行业也很广。专家估计,2000年PLC的国内市场销量为15(20万套(其中进口占90%左右),约25(35亿元人民币,年增长率约为12%。预计到2005年全国PLC需求量将达到25万套左右,约35(45亿元人民币。
PLC市场也反映了全世界制造业的状况,2000后大幅度下滑。但是,按照Automation Research Corp的预测,尽管全球经济下滑,PLC市场将会复苏,估计全球PLC市场在2000年为76亿美元,到2005年底将回到76亿美元,并继续略微增长。
微型化、网络化、PC化和开放性是PLC未来发展的主要方向。在基于PLC自动化的早期,PLC体积大而且价格昂贵。但在最近几年,微型PLC(小于32 I/O)已经出现,价格只有几百欧元。随着软PLC(Soft PLC)控制组态软件的进一步完善和发展,安装有软PLC组态软件和PC-based控制的市场份额将逐步得到增长。
当前,过程控制领域最大的发展趋势之一就是Ethernet技术的扩展,PLC也不例外。现在越来越多的PLC供应商开始提供Ethernet接口。可以相信,PLC将继续向开放式控制系统方向转移,尤其是基于工业PC的控制系统。
三、 面向测控管一体化设计的DCS系统
集散控制系统DCS(Distributed Control System)问世于1975年,生产厂家主要集中在美、日、德等国。我国从70年代中后期起,首先由大型进口设备成套中引入国外的DCS,首批有化纤、乙烯、化肥等进口项目。当时,我国主要行业(如电力、石化、建材和冶金等)的DCS基本全部进口。80年代初期在引进、消化和吸收的同时,开始了研制国产化DCS的技术攻关。
近10年,特别是“九五”以来,我国DCS系统研发和生产发展很快,崛起了一批优秀企业,如北京和利时公司、上海新华公司、浙大中控公司、浙江威盛公司、航天测控公司、电科院以及北京康拓集团等。这批企业研制生产的DCS系统,不仅品种数量大幅度增加,而且产品技术水平已经达到或接近国际先进水平。在2001年全国应用的4426套DCS系统中,国产DCS系统为1486套,占35%。短短几年,国外DCS系统在我国一统天下的局面从此不再出现。这些专业化公司不仅占据了一定的市场份额,积累了发展的资本和技术,同时使得国外引进的DCS系统价格也大幅度下降,为我国自动化推广事业做出了贡献。与此同时,国产DCS系统的出口也在逐年增长。
虽然国产DCS的发展取得了长足进步,但国外DCS产品在国内市场中占有率还较高,其中主要是Honeywell和横河公司的产品。我国DCS的市场年增长率约为20%,年市场额约为30(35亿元。由于近5年内DCS在石化行业大型自控装置中没有可替代产品,所以其市场增长率不会下降。据统计,到2005年,我国石化行业有1000多套装置需要应用DCS控制;电力系统每年新装1000多万千瓦发电机组,需要DCS实现监控;不少企业已使用DCS近15(20年,需要更新和改造。所以,今后5年内DCS作为自动化仪表行业主要产品的地位不会动摇。
根据中国仪器仪表行业协会公布的调查数据显示,2002年我国DCS市场状况如下:
小型化、多样化、PC化和开放性是未来DCS发展的主要方向。目前小型DCS所占有的市场,已逐步与PLC、工业PC、FCS共享。今后小型DCS可能首先与这三种系统融合,而且“软DCS”技术将首先在小型DCS中得到发展。PC-based控制将更加广泛地应用于中小规模的过程控制,各DCS厂商也将纷纷推出基于工业PC的小型DCS系统。开放性的DCS系统将同时向上和向下双向延伸,使来自生产过程的现场数据在整个企业内部自由流动,实现信息技术与控制技术的无缝连接,向测控管一体化方向发展。
四、 控制系统正在向现场总线(FCS)方向发展
由于3C(Computer、Control、Communication)技术的发展,过程控制系统将由DCS发展到FCS(Fieldbus Control System)。FCS可以将PID控制彻底分散到现场设备(Field Device)中。基于现场总线的FCS又是全分散、全数字化、全开放和可互操作的新一代生产过程自动化系统,它将取代现场一对一的4(20mA模拟信号线,给传统的工业自动化控制系统体系结构带来革命性的变化。
根据IEC61158的定义,现场总线是安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、双向传输、多分支结构的通信网络。现场总线使测控设备具备了数字计算和数字通信能力,提高了信号的测量、传输和控制精度,提高了系统与设备的功能、性能。IEC/TC65的SC65C/WG6工作组于1984年开始致力于推出世界上单一的现场总线标准工作,走过了16年的艰难历程,于1993年推出了IEC61158-2,之后的标准制定就陷于混乱。2000年初公布的IEC61158现场总线国际标准子集有八种,分别为:
类型1 IEC技术报告(FFH1);
类型2 Control-NET(美国Rockwell公司支持);
类型3 Profibus(德国Siemens公司支持);
类型4 P-NET(丹麦Process Data公司支持);
类型5 FFHSE(原FFH2)高速以太网(美国Fisher Rosemount公司支持);
类型6 Swift-Net(美国波音公司支持);
类型7 WorldFIP(法国Alsto公司支持);
类型8 Interbus(美国Phoenix Contact公司支持)。
除了IEC61158的8种现场总线外,IEC TC17B通过了三种总线标准:SDS(Smart Distributed System);ASI(Actuator Sensor Interface);Device NET。另外,ISO公布了ISO 11898 CAN标准。其中Device NET于2002年10月8日被中国批准为国家标准,并于2003年4月1日开始实施。
目前在各种现场总线的竞争中,以Ethernet为代表的COTS(Commercial-Off-The-Shelf)通信技术正成为现场总线发展中新的亮点。其关注的焦点主要集中在两个方面:
(1) 能否出现全世界统一的现场总线标准;
(2) 现场总线系统能否全面取代现时风靡世界的DCS系统。
采用现场总线技术构造低成本的现场总线控制系统,促进现场仪表的智能化、控制功能分散化、控制系统开放化,符合工业控制系统的技术发展趋势。国家在“九五”期间为了加快现场总线技术在我国的发展,重点放在智能化仪表和现场总线技术的开发和工程化上,补充和完善工艺设备、开发装置和测试装置,建立智能化仪表和开发自动化系统的生产基地,形成适度规模经济。2000年,“九五”国家科技攻关计划“新一代全分布式控制系统研究与开发”和“现场总线智能仪表研究开发”两个项目相继完成。这两个项目以及先期完成的“现场总线控制系统的开发”项目,针对国际上已经出现的多种现场总线协议并存的局面,重点选择了HART协议和FF协议现场总线技术攻关。
总之,计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统(DCS)后,将朝着现场总线控制系统(FCS)的方向发展。虽然以现场总线为基础的FCS发展很快,但FCS发展还有很多工作要做,如统一标准、仪表智能化等。另外,传统控制系统的维护和改造还需要DCS,因此FCS完全取代传统的DCS还需要一个较长的过程,同时DCS本身也在不断的发展与完善。可以肯定的是,结合DCS、工业以太网、先进控制等新技术的FCS将具有强大的生命力。工业以太网以及现场总线技术作为一种灵活、方便、可靠的数据传输方式,在工业现场得到了越来越多的应用,并将在控制领域中占有更加重要的地位。
五、仪器仪表技术在向数字化、智能化、网络化、微型化方向发展
经过五十年的发展,我国仪器仪表工业已有相当基础,初步形成了门类比较齐全的生产、科研、营销体系。现有各类仪器仪表企业6000余家,年销售额约1000亿元,成为亚洲除日本之外第二大仪器仪表生产国。据海关统计,除去随成套工程项目配套引进的仪器仪表不计,去年进口各类仪器仪表近60亿美元,约占我国仪器仪表工业总产值的50%。但目前我国仪器仪表行业产品大多属于中低档水平,随着国际上数字化、智能化、网络化、微型化的产品逐渐成为主流,差距还将进一步加大。目前,我国高档、大型仪器设备大多依赖进口。中档产品以及许多关键零部件,国外产品占有我国市场60%以上的份额,而国产分析仪器占全球市场不到千分之二的份额。
2001年3月,第九届全国人大四次会议批准的“十五”计划纲要首次提出“把发展数控机床,仪器仪表和基础零部件放到重要位置,努力提高质量和技术水平”。2001年8月,国家计委把仪器仪表明确列为国民经济重要技术装备,国家经贸委制定并公布的仪器仪表行业 “十五”规划,确立了6项高技术产业化项目:
1. 基于现场总线技术的全开放分散控制系统及智能仪表;
2. 新型传感器;
3. 智能化工业控制部件与执行机构;
4. 环境与污染源监测仪器及自动监测系统;
5. 城市污水处理利用成套工艺设备中的仪表自动化控制系统;
6. 炼钢转炉煤气净化回转成套装置中的仪表自动化控制系统。
根据仪器仪表行业的预测,“十五”期间我国仪器仪表市场大致是:2002年1628亿,2003年1790亿,2004年1969亿,2005年2165亿。五年间,平均年市场容量为1806亿(相当于220亿美元),其中工业自动化仪表和控制系统占41%、科学测试仪器占25%、医疗仪器占17%、其它占17%,平均年增长率将不会低于10%。
今后仪器仪表技术的主要发展趋势:
* 仪器仪表向智能化方向发展,产生智能仪器仪表;
* 测控设备的PC化,虚拟仪器技术将迅速发展;
* 仪器仪表网络化,产生网络仪器与远程测控系统。
几点建议:
* 开发具有自主知识产权的产品,掌握核心技术。
* 加强仪器仪表行业的系统集成能力。
* 进一步拓展仪器仪表的应用领域。
六、 数控技术向智能化、开放性、网络化、信息化发展
从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了51年的历程。近10年来,随着计算机技术的飞速发展,各种不同层次的开放式数控系统应运而生,发展很快。目前正朝着标准化开放体系结构的方向前进。就结构形式而言,当今世界上的数控系统大致可分为4种类型:
1. 传统数控系统;
2. “PC嵌入NC”结构的开放式数控系统;
3. “NC嵌入PC”结构的开放式数控系统;
4. SOFT型开放式数控系统。
我国数控系统的开发与生产,通过“七五”引进、消化、吸收,“八五”攻关和“九五”产业化,取得了很大的进展,基本上掌握了关键技术,建立了数控开发、生产基地,培养了一批数控人才,初步形成了自己的数控产业,也带动了机电控制与传动控制技术的发展。同时,具有中国特色的经济型数控系统经过这些年来的发展,产品的性能和可靠性有了较大的提高,逐渐被用户认可。
国外数控系统技术发展的总体发展趋势是:
* 新一代数控系统向PC化和开放式体系结构方向发展;
* 驱动装置向交流、数字化方向发展;
* 增强通信功能,向网络化发展;
* 数控系统在控制性能上向智能化发展。
进入21世纪,人类社会将逐步进入知识经济时代,知识将成为科技和生产发展的资本与动力,而机床工业,作为机器制造业、工业以至整个国民经济发展的装备部门,毫无疑问,其战略性重要地位、受重视程度,也将更加鲜明突出。
近年来,我国数控机床一直保持两位数增长。2001年,我国机床工业产值已进入世界第5名,机床消费额在世界排名上升到第3位,达47.39亿美元,仅次于美国的53.67亿美元。2002年产值达260亿元,产量居世界第4。但与发达国家相比,我国机床数控化率还不高,目前生产产值数控化率还不到30%;消费值数控化率还不到50%,而发达国家大多在70%左右。由于国产数控机床不能满足市场的需求,高档次的数控机床及配套部件只能靠进口,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24.06亿美元,比上年增长27.3%。
智能化、开放性、网络化、信息化成为未来数控系统和数控机床发展的主要趋势:
* 向高速、高效、高精度、高可靠性方向发展;
* 向模块化、智能化、柔性化、网络化和集成化方向发展;
* 向PC-based化和开放性方向发展;
* 出现新一代数控加工工艺与装备,机械加工向虚拟制造的方向发展。
* 信息技术(IT)与机床的结合,机电一体化先进机床将得到发展。
* 纳米技术将形成新发展潮流,并将有新的突破。
* 节能环保机床将加速发展,占领广大市场。
七、 工业控制网络将向有线和无线相结合方向发展
自从1977年第一个民用网系统ARCnet投入运行以来,有线局域网以其广泛的适用性和技术价格方面的优势,获得了成功并得到了迅速发展。然而,在工业现场,一些工业环境禁止、限制使用电缆或很难使用电缆,有线局域网很难发挥作用,因此无线局域网技术得到了发展和应用。随着微电子技术的不断发展,无线局域网技术将在工业控制网络中发挥越来越大的作用。
无线局域网(Wireless LAN)技术可以非常便捷地以无线方式连接网络设备,人们可随时、随地、随意地访问网络资源,是现代数据通信系统发展的重要方向。无线局域网可以在不采用网络电缆线的情况下,提供以太网互联功能。在推动网络技术发展的同时,无线局域网也在改变着人们的生活方式。无线网通信协议通常采用IEEE802.3和802.11。802.3用于点对点方式,802.11用于一点对多点方式。无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)、无线网桥、无线Modem及无线网卡等来实现,以无线网卡使用最为普遍。无线局域网的未来的研究方向主要集中在安全性、移动漫游、网络管理以及与3G等其它移动通信系统之间的关系等问题上。
在工业自动化领域,有成千上万的感应器,检测器,计算机,PLC,读卡器等设备,需要互相连接形成一个控制网络,通常这些设备提供的通信接口是RS-232或RS-485。无线局域网设备使用隔离型信号转换器,将工业设备的RS-232串口信号与无线局域网及以太网络信号相互转换,符合无线局域网IEEE 802.11b和以太网络IEEE 802.3标准,支持标准的TCP/IP网络通信协议,有效的扩展了工业设备的联网通信能力。
计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。无线局域网技术能够在工厂环境下,为各种智能现场设备、移动机器人以及各种自动化设备之间的通信提供高带宽的无线数据链路和灵活的网络拓扑结构,在一些特殊环境下有效地弥补了有线网络的不足,进一步完善了工业控制网络的通信性能。
八、工业控制软件正向先进控制方向发展
自20世纪80年代初期诞生至今,工业控制软件已有20年的发展历史。工业控制软件作为一种应用软件,是随着PC机的兴起而不断发展的。工业控制软件主要包括人机界面软件(HMI),基于PC的控制软件以及生产管理软件等。目前,我国已开发出一批具有自主知识产权的实时监控软件平台、先进控制软件、过程优化控制软件等成套应用软件,工程化、产品化有了一定突破,打破了国外同类应用软件的垄断格局。通过在化工、石化、造纸等行业的数百个企业(装置)中应用,促进了企业的技术改造,提高了生产过程控制水平和产品质量,为企业创造了明显的经济效益。2000年,“九五”国家科技攻关计划项目“大型骨干石化生产系统控制及计算机应用技术”通过了验收。
作为工控软件的一个重要组成部分,国内人机界面组态软件研制方面近几年取得了较大进展,软件和硬件相结合,为企业测、控、管一体化提供了比较完整的解决方案。在此基础上,工业控制软件将从人机界面和基本策略组态向先进控制方向发展。
先进过程控制APC(Advanced Process Control)目前还没有严格而统一的定义。一般将基于数学模型而又必须用计算机来实现的控制算法,统称为先进过程控制策略。如:
* 自适应控制;
* 预测控制;
* 鲁棒控制;
* 智能控制(专家系统、模糊控制、神经网络)等。
由于先进控制和优化软件可以创造巨大的经济效益,因此这些软件也身价倍增。国际上已经有几十家公司,推出了上百种先进控制和优化软件产品,在世界范围内形成了一个强大的流程工业应用软件产业。因此,开发我国具有自主知识产权的先进控制和优化软件,打破外国产品的垄断,替代进口,具有十分重要的意义。
在未来,工业控制软件将继续向标准化、网络化、智能化和开放性发展方向。
结束语
工业信息化是指在工业生产、管理、经营过程中,通过信息基础设施,在集成平台上,实现信息的采集、信息的传输、信息的处理以及信息的综合利用等。在“十五”期间,国家用信息化带动工业化的工作重点有三个方面:一是以电子信息技术应用为重点,提高传统产业生产过程自动化、控制智能化和管理信息化水平;二是以先进制造技术应用为重点,推进制造业领域的优质高效生产,振兴装备制造业;三是改造提升重点产业的关键技术、共性技术及其相关配套技术水平、工艺和装备水平。国家实施高技术产业化的主要目标有两个:一是发展高技术,形成新兴产业,培育新的增长点;二是利用先进技术改造和优化传统产业,提高经济增长的质量。
由于大力发展工业自动化是加快传统产业改造提升、提高企业整体素质、提高国家整体国力、调整工业结构、迅速搞活大中型企业的有效途径和手段,国家将继续通过实施一系列工业过程自动化高技术产业化专项,用信息化带动工业化,推动工业自动化技术的进一步发展,加强技术创新,实现产业化,解决国民经济发展面临的深层问题,进一步提高国民经济整体素质和综合国力,实现跨越式发展。
计算机图形学发展前景怎么样,现在研究领域一般都分哪些?
计算机图形学是随着计算机及其外围设备而产生和发展起来的,作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业。
1.计算机图形学活跃理论及技术
(1)分形理论及应用
分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
??海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。它无法用常规的、传统的几何方法描述。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是部局形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去十分相似。
??曾有人提出了这样一个显然是荒谬的命题:“英国的海岸线的长度是无穷大。”其论证思路是这样的:海岸线是破碎曲折的,我们测量时总是以一定的尺度去量得某个近似值,例如,每隔100米立一个标杆,这样,我们测得的是一个近似值,是沿着一条折线计算而得出的近似值,这条折线中的每一段是一条长为100米的直线线段。如果改为每10米立一个标杆,那么实际量出的是另一条折线的长度,它的每一个片段长10米。显然,后一次量出的长度将大于前一次量出的长度。如果我们不断缩小尺度,所量出的长度将会越来越大。这样一来,海岸线的长度不就成为无穷大了吗?
??为什么会出现这样的结论呢?曼德布罗特提出了一个重要的概念:分数维,又称分维。一般来说,维数都是整数,直线线段是一维的图形,正方形是二维的图形。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种维数观并不能解决海岸线的长度问题。曼德布罗特是这样描述一个绳球的维数的:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维的概念,海岸线的长度就可以确定了。
??1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(Fractal),这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。
??曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(Fractal theory)或分形几何学(Fractal geometry)。
分形的特点和理论贡献
??数学上的分形有以下几个特点:
??(1)具有无限精细的结构;
??(2)比例自相似性;
??(3)一般它的分数维大于它的拓扑维数;
??(4)可以由非常简单的方法定义,并由递归、迭代产生等。
??(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息。第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。
??我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何做一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系,其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范围主要是人造的物体;而分形由递归、迭代生成,主要适用于自然界中形态复杂的物体,分形几何不再以分离的眼光看待分形中的点、线、面,而是把它们看成一个整体。
??我们可以从分形图案的特点去理解分形几何。分形图案有一系列有趣的特点,如自相似性、对某些变换的不变性、内部结构的无限性等。此外,分形图案往往和一定的几何变换相联系,在一些变化下,图案保持不变,从任意的初始状态出发,经过若干次的几何变换,图形将固定在这个特定的分形图案上,而不再发生变化。自相似原则和迭代生成原则是分形理论的重要原则。
??分形理论发展了维数的概念。在发现分数维以前,人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
??分形是20世纪涌现出的新的科学思想和对世界认识的新视角。从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广。同时它又与现实的物理世界紧密相连,成为研究混沌(Chaos)现象的重要工具。众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
??由于分形的研究,人们对于随机性和确定性的辩证关系有了进一步的理解。同样对于过程和状态的联系,对于宏观和微观的联系,对于层次之间的转化,对于无限性的丰富多采,也都产生了有益的影响。
??分形理论还是非线性科学的前沿和重要分支,作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识局部来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态和秩序;三是分形从特定层面揭示了世界普遍联系和统一的图景。
分形学的应用领域
??除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力,它已经在许多领域中得到有效的应用,其应用范围之广、效益之明显远远超过了十几年前的任何预测。目前大量分形方法的应用案例层出不穷。这些案例涉及的领域包括:生命过程进化,生态系统,数字编码和解码,数论,动力系统,理论物理(如流体力学和湍流) 等方面,此外,还有人利用分形学做城市规则和地震预报。
??分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。
??近年来,由分形理论发展起来的分形艺术(Fractal Art,FA),在表现形式和分形几何的理解等方面亦取得了突破性的进展。分形艺术是二维可视艺术,在许多方面类似于摄影。分形图像作品一般是通过计算机屏幕和打印机来展现的。分形艺术中的另一个重要部分便是分形音乐,分形音乐是由一个算法的多重迭代产生的。自相似是分形几何的本质,有人利用这一原理来建构一些带有自相似小段的合成音乐,主题在带有小调的三番五次的反复循环中重复,在节奏方面可以加上一些随机变化。我们常见的计算机屏幕保护程序,许多也是通过分形计算而得来的。
进入1990年代以来,人们开始越来越多地利用这一理论研究经济领域的一些问题,主要集中在对金融市场(如股票市场、外汇市场等)的研究。操纵者可以通过在若干时间点上的操纵使股价在微观尺度上发生所希望的变化;从时间的宏观尺度上来看,要使股价发生所希望的变化,就要求操纵者具有相当的经济实力。从分形的角度来看,股票价格具有分形特征。一方面,股价具有复杂的微观结构;另一方面,它具有对时间的标度不变性,即在不同的观测尺度下具有相似的结构,其结构是复杂和简单、不规则和有序的统一。对股价操纵者来说,要在单个时间点上影响股价并不难,即使是在大的时间尺度上影响股价也是有可能的,但是要想通过人为的操纵,在影响股价的同时,保持股价在时间的微观和宏观尺度上的一致性,在技术上就会显得非常困难。
(2) 曲面造型技术。它是计算机图形学和计算机辅助几何设计(Computer Aided Geometric Design)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源于飞机、船舶的外形放样工艺,由Coons、Bezier等大师于六十年代奠定理论基础。经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Interpolation) 、拟合(Fitting) 、逼近(Approximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。这主要表现在研究领域的急剧扩展和表示方法的开拓创新。
一.从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(Deformation or Shape Blending): 传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(Skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(FFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。最近,笔者及其学生刘利刚首创活动局部球面坐标插值的新思想,给出了空间点集内在变量的完整数学描述,从几何内在解的角度,设计了三维多面体和自由曲面形状调配的一整套快速有效的算法,画面流畅,交互实时,对三维曲面变形的技术难题实现了突破。
曲面重建(Reconstruction):在精致的轿车车身设计或人脸-类雕塑曲面的动画制作中,常用油泥制模,再作三维型值点采样。在医学图象可视化中,也常用CT切片来得到人体脏器表面的三维数据点。从曲面上的部分采样信息来恢复原始曲面的几何模型,称为曲面重建。采样工具为:激光测距扫描器,医学成象仪,接触探测数字转换器,雷达或地震勘探仪器等。根据重建曲面的形式,它可分为函数型曲面重建和离散型曲面重建这两类。
曲面简化(Simplification):与曲面重建一样,这一研究领域目前也是国际热点之一。其基本思想在于从三维重建后的离散曲面或造型软件的输出结果(主要是三角网格)中去除冗余信息而又保证模型的准确度,以利于图形显示的实时性、数据存储的经济性和数据传输的快速性。对于多分辨率曲面模型而言,这一技术还有利于建立曲面的层次逼近模型,进行曲面的分层显示,分层传输和分层编辑。具体的曲面简化方法有:网格顶点剔除法,网格边界删除法,网格优化法,最大平面逼近多边形法以及参数化重新采样法。
曲面转换(Conversion):同一张曲面可以表为不同的数学形式,这一思想不仅具有理论意义,而且具有工业应用的现实意义。例如,NURBS这种参数有理多项式曲面虽然包括了参数多项式曲面的一切优点,但也存在着微分运算繁琐费时、积分运算无法控制误差的局限性。而在曲面拼接及物性计算中,这两种运算是不可避免的。这就提出了把一张NURBS曲面转化成近似的多项式曲面的问题。同样的要求更体现在NURBS曲面设计系统与多项式曲面设计系统之间的数据传递和无纸化生产的工艺过程中。再如,在两张参数曲面的求交运算中,如果把其中一张曲面的NURBS形式转化为隐式,就容易得到方程的数值解。近几年来,国际图形界对曲面转换的研究主要集中在以下几方面:NURBS曲面用多项式曲面来逼近的算法及收敛性;Bezier曲线曲面的隐式化及其反问题;CONSURF飞机设计系统的Ball曲线向高维的各种推广形式的比较及互化;有理Bezier曲线曲面的降阶逼近算法及误差估计;NURBS曲面在三角域上与矩形域上的互相快速转化等。
曲面位差(Offset):也称为曲面等距性,它在计算机图形及加工中有广泛应用,因而成为这几年的热门课题之一。例如,数控机床的刀具路径设计就要研究曲线的等距性。但从数学表达式容易看出,一般而言,一条平面参数曲线的等距曲线不再是有理曲线,这就越出了通用的NURBS系统的使用范围,造成了软件设计的复杂性和数值计算的不稳定。
二.从表示方法来看,以网格细分(Subdivision)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
在1998年荣获奥斯卡大奖的电影作品中,有一个短片赫然在列,这就是美国著名的Pixar动画电影制片厂选送的作品"Geri's Game"。动画片描述了一个名叫Geri的老头,在公园里自己与自己下国际象棋,千方百计想取胜的诙谐故事。画面中人物和景色的造型细致生动,与故事情节浑然一体,使观众得到真正的美学享受。而这部动画片制作中的设计者,就是以上论文的作者,著名的计算机图形学家T.DeRose。DeRose在SIGGRAPH'98大会上报告的论文讲到了选用C-C细分曲面作为Geri老头特征造型模型的背景。他指出,NURBS尽管早已被国际标准组织ISO作为定义工业产品数据交换的STEP标准,在工业造型和动画制作中得到了广泛的应用,但仍然存在着局限性。单一的NURBS曲面,如其他参数曲面一样,限于表示在拓扑上等价于一张纸,一个圆柱面或一个圆环面的曲面,不能表示任意拓扑结构的曲面。为了表达特征动画中更复杂的形状,如人的头,人的手或人的服饰,我们面临着一场技术挑战。当然,我们可以用最普通的复杂光滑曲面的造型方法,例如对NURBS的修剪(Trimming)来对付。确实,目前已经存在一些商用系统,诸如Alias-Wavefront和SoftImage等可以做到这一点,但是它们至少会遭遇到以下的困难:第一,修剪是昂贵的,而且有数值误差;第二,要在曲面的接缝处保持光滑,即使是近似的平滑也是困难的,因为模型是活动的。而细分曲面有潜力克服以上两个困难,它们无须修剪,没有缝,活动模型的平滑度被自动地保证。DeRose成功地应用了C-C的细分曲面造型法,同时发明了构造光滑的变半径的轮廓线及合成物的实际技术,提出了在服饰模型中碰撞检测的有效新算法,构造了关于细分曲面的光滑因子场方法。凭借这些数学和软件基础,他形象逼真地表现了Geri老头的头壳,手指和衣服,包括茄克衫,裤子,领带和鞋子。这些都是传统的NURBS连续曲面造型所不易做到的。那么,C-C细分曲面是怎样构造的呢?它与传统的Doo-Sabin细分曲面异曲同工,都是从一个称之为控制网格(网格多半可用激光从手工模型上输入)的多面体开始,递归地计算新网格上的每个顶点,这些顶点都是原网格上某几个顶点的加权平均。如果多面体的一个面有n条边,细分一次后,这个面就会变成n个四边形。随着细分的不断进行,控制网格就被逐渐磨光,其极限状态就是一张自由曲面。它是无缝的,因而是平滑的,即使模型是活动的。这种方法显著地压缩了设计和建立一个原始模型的时间。更重要的,允许原始模型局部地精制化。这就是它优于连续曲面造型方法之处. C-C细分是基于四边形的,而Loop曲面(1987年),蝶形曲面(1990年)是基于三角形的。它们都一样受到当今图形工作者的重用。
(3)计算机辅助设计与制造(CAD/CAM)。 这是一个最广泛,最活跃的应用领域。计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
1.制造业中的应用
CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。
同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
2.工程设计中的应用
CAD技术在工程领域中的应用有以下几个方面:
(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.电气和电子电路方面的应用
CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
4.仿真模拟和动画制作
应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
5.其他应用
CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术
CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是20世纪90年代CAD技术发展的新趋向。
经过了一阶段计算机图形学的学习,对于图形学中基本图形的生成算法有了一定的了解。深度研究图形学,需要高深的数学知识,且每一个细化的方向需要的知识也不一样。图形学是计算机科学与技术学科的活跃前沿学科,被广泛的应用到生物学、物理学、化学、天文学、地球物理学、材料科学等领域。我深深感到这门学科涉及的领域之广是惊人的,可以说博大精深。
VR虚拟现实与VM虚拟制造有什么区别?
VR(Virtual Reality)虚拟现实
这是知名度最高的概念,也是最先将在2016年迎来市场起飞的行业。行业中最著名的企业是Oculus VR、Sony、HTC,它们都将在2016年发售自己的VR设备,包括头显和VR专用交互设备。
Oculus VR
VR目前最重要标志的是:用户需要佩戴“头戴式显示器(Head Mounted Display)”,简称“头显(HMD)”。显示的内容可来自个人电脑、游戏机或手机。
VR与之前所有的显示设备(如电视、显示器、iMax屏幕)相比,最大的突破就是“沉浸感”,因此目前的VR技术也被称为:沉浸式虚拟现实技术。用户戴上头显后,被完全“包裹”在虚拟世界中,当用户转动头部(甚至四处走动)时,他看到的虚拟世界会完全随着眼睛的位置和角度而改变,就如同在真实世界中一样。
VR中另一个最常被提到的词是“临场感(Presence)”。VR的力量就在于可以“欺骗”用户的大脑,让人在某种程度上相信自己确实处于虚拟世界里。所以临场感的强弱是检验VR设备及内容是否优秀的最重要标准。
AR(Augmented Reality)增强现实
AR通常也是通过头戴式设备实现的,其中最著名的是谷歌眼镜,但也可以通过移动终端,甚至普通的手机也可以实现一些基本的AR功能。
AR中的关键词是“功能(Utility)”,AR 技术让用户在观察真实世界的同时,能接收和真实世界相关的数字化的信息和数据,从而对用户的工作和行为产生帮助。一个典型的应用场景:用户戴着AR眼镜,当他看到真实世界中的一家餐厅,眼镜会马上显示这家餐厅的特点、价格等信息。
虽然AR听上去不如VR那么新奇,但由于在政府,企业及消费市场上都有广泛的应用前景,大多数市场机构都认为AR的市场将远远大于VR。
MR(Mixed Reality)混合现实
MR是最晚出现的,但也是听起来最高大上的概念。实际上是VR和AR的一种结合。
利用MR技术,用户可以看到真实世界(AR的特点),同时也会看到虚拟的物体(VR的特点)。MR将虚拟物体置于真实世界中,并让用户可以与这些虚拟物体进行互动。
HoloLense 客厅大战外星侵略生物
最典型的MR应用场景,就是微软在HoloLense发布会上展示的,用户可以在自家的客厅里大战入侵的外星生物。
相对于VR和AR,MR技术的成熟度最低。大家最熟悉的MR技术应该是微软的HoloLense和谷歌投资的Magic Leap。但这两家公司发布的相关视频明显都有“人为处理”的痕迹。而且还没有任何一家公司敢于公布产品上市的时间
CR(Cinematic Reality)影像现实
CR是Magic Leap曾经宣扬的概念,说自己是Cinematic Reality,影像现实,意思是虚拟场景跟电影特效一样逼真。但是后来好像他们的发言人也把自己归做MR了,那我们就把它跟MR归为一类吧。
有一点很重要,就是Magic Leap并不是裸眼观看的,不要被曾经红极一时的鲸鱼视频误导,Magic Leap同样需要一个头戴显示器,鲸鱼视频应该是后期做的特效。
2015年刷爆朋友圈的:鲸鱼视频刷爆朋友圈的Magic Leap
人类希望能凭空看到一个虚拟物体,已经想了几百年了,各种科幻电影里也出现了很多在空气中的全息影像。其实想想本质就知道,这事从物理上很难实现的:纯空气中没有可以反射或折射光的介质。显示东西最重要的是介质。
说完了以上AR、VR、MR、CR的概念后,我们来说说他们之间的区别吧。
VR(虚拟现实)和VR(增强现实)的区别
简单来说,虚拟现实(VR),看到的场景和人物全是假的,是把你的意识代入一个虚拟的世界。增强现实(AR),看到的场景和人物一部分是真一部分是假,是把虚拟的信息带入到现实世界中。
交互区别
VR设备:因为VR是纯虚拟场景,所以VR装备更多的是用于用户与虚拟场景的互动交互,更多的使用是:位置跟踪器、数据手套(5DT之类的)、动捕系统、数据头盔等等。
AR设备:由于AR是现实场景和虚拟场景的结合,所以基本都需要摄像头,在摄像头拍摄的画面基础上,结合虚拟画面进行展示和互动,比如GOOGLE GLASS这些(其实严格的来说,IPAD,手机这些带摄像头的只能产品,都可以用于AR,只要安装AR的软件就可以。)
技术区别
类似于游戏制作,创作出一个虚拟场景供人体验,其核心是graphics的各项技术的发挥。和我们接触最多的就是应用在游戏上,可以说是传统游戏娱乐设备的一个升级版,主要关注虚拟场景是否有良好的体验。而与真实场景是否相关,他们并不关心。VR设备往往是浸入式的,典型的设备就是oculus rift。
AR应用了很多computer vision的技术。AR设备强调复原人类的视觉的功能,比如自动去识别跟踪物体,而不是我手动去指出;自主跟踪并且对周围真实场景进行3D建模,而不是我打开Maya照着场景做一个极为相似的。典型的AR设备就是普通移动端手机,升级版如Google Project Tango。
AR(增强现实)和MR(混合现实)、CR(影像现实)的区别
先进制造技术的关键技术是哪些
先进制造是一个比较抽象的概念,我下面就给你找出一篇相关文章,希望会对你有所帮助。
先进制造技术及其发展趋势
一般认为,人类文明有三大物质支柱:材料、能源和信息。这三大支柱都离不开人类的制造活动。没有“制造”,就没有人类。恩格斯在《自然辩证法》中讲道:“直立和劳动创造了人类,而劳动是从制造工具开始的。”可以形象地讲,人的历程是从制造第一把石刀开始的。制造业是“永远不落的太阳”,是现代文明的支柱之一。它是工业的主体,是提供生产工具、生活资料、科技手段、国防装备等的手段以及它们进步的依托,是现代化的动力源之一。
制造业决不是“夕阳产业”,但制造技术中确有“夕阳技术”,这些技术同信息化大潮格格不入,同高科技发展不相适应,缺乏市场竞争力,甚至还可能危害生态环境。而与制造技术中的“夕阳技术”相对应的“先进制造技术”,则是“制造技术”同“信息技术”、“管理科学”等有关科学技术交融而形成的新型技术,可以说,它是高技术的载体,无一工业发达国家不予高度关注。它有如下八个方面的发展趋势和特色:
1.“数”是发展的核心
“数”是指制造领域的数字化。它包括以设计为中心的数字制造、以控制为中心的数字制造和以管理为中心的数字制造。对数字化制造设备而言,其控制参数均为数字化信号;对数字化制造企业而言,各种信息(如图形、数据、知识、技能等等)均以数字形式通过网络在企业内传递,在多种数字化技术的支持下,企业对产品信息、工艺信息与资源信息进行分析、规划与重组,实现对产品设计和产品功能的仿真,对加工过程与生产组织过程的仿真或完成原型制造,从而实现生产过程的快速重组和对市场的快速反应。对全球制造业而言,在数字制造环境下,用户借助网络发布信息,各类企业通过网络应用电子商务,实现优势互补,形成动态联盟,迅速协同设计并制造出相应的产品。
2.“精”是发展的关键
“精”是指加工精度及其发展。20世纪初,超精密加工的误差是10微米,70―80年代为0.01微米,现在仅为0.001微米,即1纳米。从海湾战争、科索沃战争,到阿富汗战争、伊拉克战争,武器的命中率越来越高,其实质就是武器越来越“精”,也可以说,关键就是打“精度”战。在现代超精密机械中,对精度要求极高,如人造卫星的仪表轴承,其圆度、圆柱度、表面粗糙度等均达到纳米级;基因操作机械其移动距离为纳米级,移动精度为0.1纳米;细微加工、纳米加工技术可达纳米以下的要求,如果借助于扫描隧道显微镜与原子力显微镜的加工,则可达0.1纳米。至于微电子芯片的制造,有所谓的“三超”:①超净,加工车间尘埃颗粒直径小于1微米,颗粒数少于每立方英尺0.1个;②超纯,芯片材料有害杂质,其含量要小于十亿分之一;③超精,加工精度达纳米级。显然,没有先进制造技术,就没有先进电子技术装备;当然,没有先进电子技术与信息技术,也就没有先进制造装备。先进制造技术与先进信息技术是相互渗透、相互支持、紧密结合的。
3.“极”是发展的焦点
“极”就是极端条件,是指生产特需产品的制造技术,必须达到“极”的要求。例如,能在高温、高压、高湿、强冲击、强磁场、强腐蚀等条件下工作,或有高硬度、大弹性等特点,或极大、极小、极厚、极薄、奇形怪状的产品等,都属于特需产品。“微机电系统”就是其中之一。这是工业发达国家高度关注的一项前沿科技,亦即所谓微系统微制造。“微机电系统”用途十分广泛。在信息领域中,用于分子存储器、原子存储器、芯片加工设备;生命领域中,用于克隆技术、基因操作系统、蛋白质追踪系统、小生理器官处理技术、分子组件装配技术;军事武器中,用于精确制导技术、精确打击技术、微型惯性平台、微光学设备;航空航天领域中,用于微型飞机、微型卫星、“纳米”卫星(0.1公斤以内);微型机器人领域中,用于各种医疗手术、管道内操作、窃听与收集情报;此外,还用于微型测试仪器,微传感器、微显微镜、微温度计、微仪器等等。“微机电系统”可以完成特种动作与实现特种功能,乃至可以沟通微观世界与宏观世界,其深远意义难以估量。
4.“自”是发展的条件
“自”就是自动化。它是减轻、强化、延伸、取代人的有关劳动的技术或手段。自动化总是伴随有关机械或工具来实现的。可以说,机械是一切技术的载体,也是自动化技术的载体。第一次工业革命,以机械化这种形式的自动化来减轻、延伸或取代人的有关体力劳动,第二次工业革命即电气化进一步促进了自动化的发展。据统计,从1870―1980年,加工过程的效率提高为20倍,即体力劳动得到了有效的解放,但管理效率只提高1.8至2.2倍,设计效率只提高1.2倍,这表明脑力劳动远没有得到有效的解放。信息化、计算机化与网络化,不但可以极大地解放人的身体,而且可以有效提高人的脑力劳动水平。今天的自动化的内涵与水平已远非昔比,从控制理论、控制技术,到控制系统、控制元件等等,都有着极大的发展。自动化已成为先进制造技术发展的前提条件。
5.“集”是发展的方法
“集”就是集成化。目前,“集”主要指:①现代技术的集成。机电一体化是个典型,它是高技术装备的基础。②加工技术的集成。特种加工技术及其装备是个典型,如激光加工、高能束加工、电加工等等。③企业的集成,即管理的集成,包括生产信息、功能、过程的集成,也包括企业内部的集成和企业外部的集成。从长远看,还有一点很值得注意,即由生物技术与制造技术集结而成的“微制造的生物方法”,或所谓的“生物制造”。它的依据是,生物是由内部生长而成“器件”,而非同一般制造技术那样由外加作用以增减材料而成“器件”。这是一个崭新的充满活力的领域,作用难以估量。
6.“网”是发展的道路
“网”就是网络化。制造技术的网络化是先进制造技术发展的必由之路。制造业在市场竞争中,面临多方的压力:采购成本不断提高,产品更新速度加快,市场需求不断变化,全球化所带来的冲击日益加强等等。企业要避免这一系列问题,就必须在生产组织上实行某种深刻的变革,抛弃传统的“小而全”与“大而全”的“夕阳技术”,把力量集中在自己最有竞争力的核心业务上。科学技术特别是计算机技术、网络技术的发展,使这种变革的需要成为可能。制造技术的网络化会导致一种新的制造模式,即虚拟制造组织,这是由地理上异地分布的、组织上平等独立的多个企业,在谈判协商的基础上,建立密切合作关系,形成动态的“虚拟企业”或动态的“企业联盟”。此时,各企业致力于自己的核心业务,实现优势互补,实现资源优化动态组合与共享。
7.“智”是发展的前景
“智”就是智能化。制造技术的智能化是制造技术发展的前景。近20年来,制造系统正在由原先的能量驱动型转变为信息驱动型,这就要求制造系统不但要具备柔性,而且还要表现出某种智能,以便应对大量复杂信息的处理、瞬息万变的市场需求和激烈竞争的复杂环境,因此智能制造越来越受到重视。与传统的制造相比,智能制造系统具有以下特点:①人机一体化;②自律能力强;③自组织与超柔性;④学习能力与自我维护能力;⑤在未来,具有更高级的类人思维的能力。可以说智能制造作为一种模式,是集自动化、集成化和智能化于一身,并具有不断向纵深发展的高技术含量和高技术水平的先进制造系统,也是一种由智能机器和人类专家共同组成的人机一体化系统。它的突出之处,是在制造诸环节中,以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动,同时收集、存储、处理、完善、共享、继承和发展人类专家的制造智能。尽管智能化制造道路还很漫长,但是必将成为未来制造业的主要生产模式之一,潜力极大,前景广阔。
8.“绿”是发展的必然
“绿”就是“绿色”制造。人类必须从各方面促使自身的发展与自然界和谐一致,制造技术也不例外。制造业的产品从构思开始,到设计、制造、销售、使用与维修,直到回收、再制造等各阶段,都必须充分顾及环境保护与改善。不仅要保护与改善自然环境,还要保护与改善社会环境、生产环境以及生产者的身心健康。其实,保护与改善环境,也是保护与发展生产力。在此前提下,制造出价廉、物美、供货期短、售后服务好的产品。作为“绿色”制造,产品必须力求同用户的工作、生活环境相适应,给人以高尚的精神享受,体现物质文明与精神文明的高度交融。因此,发展与采用一项新技术时,必须树立科学的发展观,使制造业不断迈向“绿色”制造。
上面所讲的数、精、极、自、集、网、智、绿这八个方面,彼此渗透,相互依赖,相互促进,形成一个整体。同时,八个方面一定要扎根在“机械”和“制造”这个基础上,也就是说,要研究与发展“机械”本身与“制造”本身的理论与机理。八个方面的技术要以此理论与机理为基础来研究、开发、发展,要与此基础相辅相成,最终服务于制造业的发展。
值得注意的是,在科学技术高度发达与高速发展的今天,“先进制造技术”如同一切先进技术一样,是不可能不“以人为本”的,不能见“物”不见“人”,见“技术”不见“文化”、不见“精神”。离开人,离开人的精神,先进技术就失去了“灵魂”,甚至造祸于民。进一步而言,要“以人为本”,就必须“教育先导”,就必须通过各种形式的教育,培养出合乎时代潮流与我国国情的制造业的科技人才与管理人才。科技是关键,人才是根本,教育是基础。要从根本、从长远、从全面着想,不断推动我国先进制造技术的发展。