检测与传感技术(检测与传感技术pdf 冯柏群)

本文导读目录:

传感器与检测技术主要讲的什么?主要知识点,导师问这门课我能说出个大概,谢谢

传感器的英文为 transducer而不是sensor。那么中心思想是:采用一种方法将被检测对象转换为一种可以直接进行测量的信号。

这和控制理论一样这门学科需要注意几个方面或者要素。尤其需要注意的要素是“对象”。这个要素非常重要。必须明白被检测对象的不同应当采用不同的传感器和检测方法。对象包含:是什么、该对象所处的环境、检测指标等等。

目前这门学科主要讨论的是信号问题。对于本科而言主要检测方法和传感器包括:电容传感器、电阻传感器、压电传感器、电感传感器、光电传感器等。需要说明的是,目前传感器有超过一万种,正是由于被应用的环境不同和被检测对象的区别使得传感器和检测方法种类非常的。

这么学科除了前面对象的认知外,还需要理解精度与误差问题或者说理论。例如相对精度,绝对精度等知识。需要说明的是对于精度该词一直有争论,目前学术界开始统一向不确定度开始转化。

另外一个需要了解稳定性和灵敏度的知识。这也算衡量传感器的主要指标。注意对于同一传感器,实验和测试方法的不同可以有不同的稳定性和灵敏度。

至于传感器本身而言,这个就和传感器的物理和电学特性相关。不同的传感器的物理和电学特性并不相同。例如,电容传感器利用的电容效应。实际上传感器还涉及到材料学、机械设计等许多相关知识。因此传感器与检测技术这门学科属于二级学科,是一个交叉性较强的学科。

对于传感器的物理和电学特性,这个你只有看书了。因为内容太多了。例如,电容的两个极板的距离不同使得介电常数发生变化当然电压也发生变化,可以用来进行微距测量。另外当两个极板之间的距离不变,但是改变相对面积也会使得介电常数发生变化。

再举个例子,目前有些数控机床上用的磁尺进行测距。这个就利用磁场变化。

同样,前面说电容传感器利用介电常数的变化可以测微距,其实只要引起介电常数变化的很多可以考虑电容传感器。例如,目前飞机上采用电容传感器测量航空煤油液位的变化。原理就是当液位发生改变时,两极板之间的介电常数发生变化。

关键是传感器的物理和电学特性要搞明白,不同传感器是不同的。

再说一下吧,有一些物理诺贝尔和医学诺贝尔奖的获得者实际上就是靠做出的传感器和新型的检测方法获奖的。

什么是传感与检测技术

传感技术 是把各种量转变成可物理识别的信号进行输出 检测就是指人员对可是别的信号进行处理的过程。 例如 室内的湿度 我们用湿敏电容把湿度信号转变成电容信号,这就是传感。对传感来的信号进行处理的过程就是检测。

传感器与检测技术有什么样的关系?

假如用人来比喻,传感器是眼睛,耳朵,和鼻子,加上皮肤。他们来感受外界信息,检测技术是大脑,用来分析决定取舍。

传感器与检测技术主要讲的什么?

主要讲的是采用一种方法将被检测对象转换为一种可以直接进行测量的信号。

一、目前这门学科主要讨论的是信号问题。对于本科而言主要检测方法和传感器包括:电容传感器、电阻传感器、压电传感器、电感传感器、光电传感器等。需要说明的是,目前传感器有超过一万种,正是由于被应用的环境不同和被检测对象的区别使得传感器和检测方法种类非常的。

二、除了前面对象的认知外,还需要理解精度与误差问题或者说理论。例如相对精度,绝对精度等知识。需要说明的是对于精度该词一直有争论,目前学术界开始统一向不确定度开始转化。

三、至于传感器本身而言,这个就和传感器的物理和电学特性相关。不同的传感器的物理和电学特性并不相同。例如,电容传感器利用的电容效应。实际上传感器还涉及到材料学、机械设计等许多相关知识。因此传感器与检测技术这门学科属于二级学科,是一个交叉性较强的学科。

四、对于传感器的物理和电学特性,电容的两个极板的距离不同使得介电常数发生变化当然电压也发生变化,可以用来进行微距测量。另外当两个极板之间的距离不变,但是改变相对面积也会使得介电常数发生变化。

五、电容传感器利用介电常数的变化可以测微距,其实只要引起介电常数变化的很多可以考虑电容传感器。例如,目前飞机上采用电容传感器测量航空煤油液位的变化。原理就是当液位发生改变时,两极板之间的介电常数发生变化。

说说你对识别技术和传感技术的理解,他们有什么相同或者不同的地方?

一个是系统,一个是器件。

传感器的原理是通过不同的颜色物体的反射率差作为检测的原理。

传感技术同计算机技术与通信一起被称为信息技术的三大支柱。从物联网角度看,传感技术是衡量一个国家信息化程度的重要标志,作为第二届杭州物联网暨传感技术应用高峰论坛,推进我国传感器产业化快速发展。传感技术是关于从自然信源获取信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器(又称换能器)、信息处理和识别的规划设计、开发、制/建造、测试、应用及评价改进等活动。

传感器与检测技术

传感器与检测技术 用处很广泛呢,随着计算机辅助设计技术(CAD)、微机电系统(MEMS)技术、光纤技术和信息技术的发展,获取各种信息的传感器已经成为各个应用领域,特别是自动检测、自动控制系统中不可缺少的重要技术工具,越来越成为信息社会赖以存在和发展的物质与技术基础。因此,在当今信息时代掌握传感器及检测技术尤为重要。

使用: 比如防火,控温,通风,发电,自动化控制~ 方方面面都要用到传感器和检测技术来监测生产和日常生活。 以保证生产生活的稳定和安全

传感技术的概念和组成

传感技术是指高精度、高效率、高可靠性地采集各种形式信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器、信息处理和识别的规划设计、开发、制/建造、测试、应用及评价改进等活动。 传感技术同计算机技术、通信一起被称为信息技术的三大支柱。

获取信息靠各类传感器,它们有各种物理量、化学量或生物量的传感器。按照信息论的凸性定理,传感器的功能与品质决定了传感系统获取自然信息的信息量和信息质量,是高品质传感技术系统的构造第一个关键。信息处理包括信号的预处理、后置处理、特征提取与选择等。识别的主要任务是对经过处理信息进行辨识与分类。它利用被识别(或诊断)对象与特征信息间的关联关系模型对输入的特征信息集进行辨识、比较、分类和判断。因此,传感技术是遵循信息论和系统论的。它包含了众多的高新技术、被众多的产业广泛采用。它也是现代科学技术发展的基础条件,应该受到足够地重视。

为了提高制造企业的生产率(或降低运行时间)和产品质量、降低产品成本,工业界对传感技术的基本要求,是能可靠地应用于现场,完成规定的功能。

生物医学传感与检测技术有哪些特殊要求

飞秒检测发现生物医学传感与检测技术的特点和要求有:

知识密集

设计、制作与应用传感器,涉及一系列的科学与技术。以化学传感器为例,设计敏感材料需要涉及量子化学、纳米科学等学科。合成这些材料需要熟悉超分子化学、主一客化学、分子筛化学、生物技术等。成膜技术需要理解表面化学、界面物理与分子组装技术。研制转换器件需要用到微纳电子技术、光电子技术以及精密机械加工技术等。

可靠性高

因为这类传感器的应用对象是人,必须万无一失。在美国这类传感器用于临床需经食品与药物管理局(FDA)正式批准,要求极为严格,需要证明长期使用对人体无害、无副作用,用以提供的监测数据应绝对可靠。测量体液的传感器应能抗体液的侵蚀并易于清洗,在体测量或植入式传感器应与组织有良好的生物相容性且能防止排斥反应,所有这些都要求生物医学传感器具有高稳定性、高可靠性。

工艺精细

高精度的传感器离不开精细的工艺,例如基于微纳电子集成技术制成的微纳传感器,需要特殊的半导体以及高分子聚合物的加工技术,能在长时间的浸泡中不产生渗漏与变形,敏感膜与器件表面的耦合需要精细的工艺,微纳电极的制备需要借助精密仪器,需要机械方法与化学方法的密切配合。一只好的传感器既是一项产品,也是一项工艺品。

发展的特点包括:

1) 床边监侧

通常的采样、送检到提出报告,最快的速度也需要半个小时以上,这对于争取时间抢救危重病人与做好外科手术等是极其不利的。针对上述问题,目前己开发了床边监测用传感器,床边监测用传感器应简单、坚固、结实、轻便、能连续或半连续运转,便于—般医护人员操作。

2) 无损飞秒检测

无损监则是病人最容易接受的监测方式,是当前生物医学传感技术中受到普遍关注的实际问题。目前取得的进展有经皮血气传感器无损监测血气(Po2、Pco2),利用非抽血测量(即通过抽负压使血液中的低分子渗出)传感血糖、尿素等。

3) 在体监测

在体监测,可以实时、定点、动态、长期观测休内所发生的生理病理过程。在体监测所提供的信息是无与伦比的。伴随着传感技术的进展出现了多种多样的在体监测技术:植入式传感器可将体内的信息发射或传送至体外;导管式传感器可连续传感血管内或心脏内的血气/离子。在体监测目前存在的主要问题是如何改进传感器与组织的相容性问题。

4)生物芯片和微流控技术

目前医院检验科配备的各种生化分析仪器,体积庞大,价格昂贵(以万美元计),绝大部分依赖进口。按照发展省钱的生物医学工程的构思,国内外都注意发展低投入,高产出的检验仪器,它具有价格低廉、操作与携带方便等优点,其性能价格比同类大型精密仪器高出—个数量级。早期诊断不能过多地寄希望于影像设备、生化变化发生在器质变化之前、生物医学传感器可实现对肿瘤标志物等疾病的快速检测。

5) 细胞内监测

细胞是人体的基本单位,人体的主要生理生化过程是在细胞内进行的,监测细胞内的离子事件与分子事件,已成为当前生命科学中的热点课题。监测离子事件的离子选择性微电极(Ca、K、Na、C1、Mg、Li等)技术已渐趋成熟,而监测分子事件的分子选择性微电极在开发之中。

6) 仿生传感器

人体是各种传感器芜集之处,这些人体传感器具有灵敏度高、选择性好、集成度高等待点,研制仿生传感器应是发展生物医学传感技术的重要方向。目前已研制出多种受体传感器、神经元传感器、仿神经元传感器。直接采用生物材料作生物传感器存在的主要问题是,脱离固有的微环境后,活性物质易失话,解决的主要途径是利用仿生化学人工修饰或合成敏感材料。

7) 智能人工脏器

智能人工胰腺的问世,为人工脏器的智能化提供了先例。一个脏器与其他的组织和器官之间保持着多方面的联系,现行的人工脏器,只赋予该脏器单一的功能,割断了原有脏器同其他组织器官的联系。装备了传感系统、微系统或分子系统的智能人工脏器可望保持正常脏器的全面功能。异体器官移植面临难以克服的排斥反应问题,在植入的异体器官上装备抗排斥反应的分子系统是解决这一难题的有效途径。

8) 基因飞秒检测

基因调控着细胞的活动和人的生老病死,基因探测被认为是当代生命科学的核心技术之一。基因探测目前采用传统的生化方法、基因探针。这些方法的缺点是操作繁复,效率低,研制DNA、RNA传感器是解决这些问题的有效途径,这些研究正在积极进行。

9) 分子脑研究

大脑活动的物质基础是以神经递质与神经调质为主的系列分子事件,监测这些分子事件是深化分子脑研究的重要手段。递质与调质的特点之一,由于其含量甚微(pg级),在体连续传感这些物质,难度是很大的。调控基因“from gene to protein”的研究是生命科学的核心问题之一。此外,分子系统中的传感器可以识别蛋白质,处理器可据以确定基因的结构(DNA序列),执行器可以对基因进行切割拼接,即分子系统可以调控基因,影响生命过程,干预生老病死。

10)人体监测传感器网络

在体监测,可以实时、定点、动态、长期观测休内所发生的生理病理过程。在体监测所提供的信息是无与伦比的。伴随着传感技术的进展出现了多种多样的在体监测技术:植入式传感器可将体内的信息发射或传送至体外;导管式传感器可连续传感血管内或心脏内的血气/离子。在体监测目前存在的主要问题是如何改进传感器与组织的相容性问题。

  • 评论列表:
  •  鸠骨嘻友
     发布于 2022-06-06 13:42:00  回复该评论
  • 的变化可以测微距,其实只要引起介电常数变化的很多可以考虑电容传感器。例如,目前飞机上采用电容传感器测量航空煤油液位的变化。原理就是当液位发生改变时,两极板之间的介电常数发生变化。说说你对识别技术和传感技术的理解,他们有什么相同或者不同的地方?一个是系统,一个是器件。传感器的原理是通过不同的颜色物
  •  鸢旧海夕
     发布于 2022-06-06 15:58:55  回复该评论
  • 主要讨论的是信号问题。对于本科而言主要检测方法和传感器包括:电容传感器、电阻传感器、压电传感器、电感传感器、光电传感器等。需要说明的是,目前传感器有超过一万种,正是由于被应用的环境不同和被检测
  •  酒奴做啡
     发布于 2022-06-06 13:31:00  回复该评论
  • 秒检测基因调控着细胞的活动和人的生老病死,基因探测被认为是当代生命科学的核心技术之一。基因探测目前采用传统的生化方法、基因探针。这些方法的缺点是操作繁复,效率低,研制DNA、RNA传感器是解决这些问题的有效途径,这些研究正在积极进行。9) 分子脑研究大脑活动的物质基础是以神经递质与神经调质为主的系
  •  囤梦歆笙
     发布于 2022-06-06 14:01:56  回复该评论
  • 控制理论一样这门学科需要注意几个方面或者要素。尤其需要注意的要素是“对象”。这个要素非常重要。必须明白被检测对象的不同应当采用不同的传感器和检测方法。对象包含:是什么、该对象所处的环
  •  森槿勒言
     发布于 2022-06-06 14:04:14  回复该评论
  • 敏度。至于传感器本身而言,这个就和传感器的物理和电学特性相关。不同的传感器的物理和电学特性并不相同。例如,电容传感器利用的电容效应。实际上传感器还涉及到材料学、机械设计等许多相关知识。因此传感器与检测技术这门学科属于二级学科,是一个交叉性较强的学科。对于传感

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.