钻井领域技术有哪些?
一、海洋钻井设备
1.石油钻机
石油钻机是一组十分复杂的大型成套设备,制造难度大、成套范围广,用于海洋钻井的石油钻机还要能够承受海水腐蚀、海浪冲刷等恶劣的自然条件。目前,美国是制造成套石油钻机最具实力的国家。
随着交流变频调速技术的迅猛发展,交流变频电驱动钻机(AC-GTO-AC石油钻机)凭借其自身的优越性,正在取代现有的可控硅直流电驱动钻机,成为海洋石油钻机发展的换代产品。交流变频电驱动钻机在工作性能方面,实现了无级变速,恒功率宽调速,简化了钻机机械结构,提高了钻机提升能力和处理事故的能力;在操作性方面,交流电动机体积小,单机容量大,容易实现钻机的自动化、智能化和对外界变化的自适应控制,易于操作管理;在安全性方面,交流变频技术本身对电动机具有安全保护功能,易于安装、拆卸,搬迁方便灵活,安全性高。目前,世界主要钻机制造商均发展了交流变频电驱动大功率石油钻机,将其配备在钻深能力为10668米(35000英尺)及以上的深水(工作水深大于2438米,即8000英尺)的半潜式钻井平台或钻井浮船上。
另外,新型液压石油钻机也在不断地推广和使用。新型液压钻机是由挪威海事液压公司于1996年开发的一种新型钻机。该钻机作为提升机械,取消了传统的绞车、井架和游车等常规设备,用升降液缸代替了绞车,同时也替代了浮式钻井的庞大的钻柱运动补偿器,从而大大降低了钻机的质量和制造成本(据报道可降低成本30%)。除此以外,该钻机还可以与计算机组合实现钻井和钻具升降操作的机械化和自动化,操作人员数量明显减少。
目前激光石油钻机还处于研发阶段。激光钻井技术具有降低成本、提高钻速、改善井控,减少钻机工作时间、钻头磨损和起下钻时间,精确控制钻眼,以及在井眼周围形成一层坚硬的玻璃化外皮,最大限度地减少或取消同心套管等其他钻机无法比拟的优点。据悉,美国芝加哥天然气研究所(GRI)与美科罗拉多矿业学院、麻省理工学院、雷克伍德公司、菲利普斯及美国空军和陆军合作,联合开展了有关激光钻机的研究,并计划在21世纪使用上激光钻井。
随着石油钻机的不断发展,作为石油钻机的关键设备的钻井绞车、转盘、顶驱和钻井泵也得到了快速的发展。
2.井绞车
为适应海洋石油钻探和开采向深水推进的需要,钻井绞车的提升能力和钻探能力也在不断提高。
3.转盘和顶驱
钻井装置旋转系统中的两个互补设备的转盘和顶驱,也在实践中逐渐完善,功能不断增强。
4.钻井泵
对于海洋钻井,特别是深海钻井来说,钻井泵是钻井液设备中的关键设备。21世纪初National-Oilwell公司成功开发出了新一代钻井泵——HEX钻井泵,它代表了未来钻井泵的发展趋势,该钻井泵配有两台交流变频驱动电动机,采用六个缸套,与传统钻井泵相比具有输出流量稳定、超高压、超高流量、尺寸小等优点。此外,高强度钢和耐磨陶瓷在钻井泵的泵体、液缸、活塞等零件上的使用,可显著降低泵的体积、质量,同时延长泵的使用寿命,成为未来钻井泵的又一发展方向。
5.PDC钻头的新技术
对于PDC钻头来说,现在需要具备的条件是能钻达更深、更硬,地下环境更异常的区域,这必然对现代钻井工艺又提出了更高的要求。这些钻头包括自磨式PDC钻头,具有超强的抗磨性,能很好地延缓钻头的磨损,同时轻型的钻头可钻达更深、更硬的地层。另外还有耐高温的PDC钻头。
6.井控设备
钻井井下控制装置需要满足海洋钻井的需要,如需要可以关闭正在钻探的井却不需要取出钻杆;需要满足不断增加的工作压力,降低质量,减小尺寸;还需要适应新的欠平衡钻井的井控设备。
二、钻井技术
1.油气井力学与过程控制方面
(1)向信息化、智能化方向发展。
井下智能钻井系统的最终发展目标,是“地下钻掘机器人”。这种地下钻掘机器人不同于一般的机器人,它必须能够在地下极其复杂的地质环境及非常恶劣的工况下进行有效的工作。它必须能够精确探测前方和周围的地质环境及本身的状态,进而做出正确的分析和决策,并且能够自动适应所处的工作环境,沿着“预定的路线”或要求冲向“地下目标”,胜利完成人类赋予它实地探察地下资源并加以开采的神圣任务。这种地下钻掘机器人,是自动化钻井的核心,将是多种高新技术和新产品的进一步研究和开发及其微型化集成的结果,代表着未来钻井与掘进技术的发展趋势,可望在21世纪前半叶实现并达到比较理想的成熟度。
(2)向多学科紧密结合、提高勘探发现率和提高油井产量与采收率方向发展。
以近年来发展迅速、技术先进的水平井为例,水平井设计程序和框图是1992年11月由美国石油工程协会和地质家协会、地球物理家协会和测井分析家协会共同开会约定的,该设计内容是由地质、钻井、采油油藏、成本核算四部分人员共同合作完成的。应用水平井技术勘探和开发整装油气田,是20世纪90年代水平井应用发展的主要趋势之一,它不仅可显著提高油田产量,更可以有效地提高油田采收率。
(3)向有效勘探和开采特殊油气藏方向发展。
特殊油气藏包括低渗油气藏、断块油气藏、稠油油藏、高含水油气藏、薄油层等。以低渗油气藏为例:我国已探明储量中,低渗油气藏占总探明储量25%,近3~4年新增探明储量中,约60%为低渗油气藏,其低孔、低渗的两低特性使其勘探发现难度极大,而且储层伤害问题贯穿于钻井、完井和测试全过程。因此,研究发展低压低渗探井钻井过程中储层伤害机理及评价方法、钻井液化学与储层保护技术、最大限度发现和保护储层的全过程欠平衡钻井优化设计和适应性等,是有效勘探和开采特殊油气藏的钻井工程核心问题。
2.复杂油气多相流与高压水射流方面
(1)复杂油气水多相流本质认识更深入,模型研究更科学、更接近实际。
近年来国内外在多相流基础理论方面的研究内容主要涉及多相流流型、流型图、压力降、截面含气率、截面含液率、特种管件内的多相流、液汽、喷汽及数值计算等,理论研究发展迅速。为了掌握油气两相流在水平井中的流动特性,包括沿井长的压力降、持液率及流体从储油层中流出的状况,研究人员进行了一系列试验和理论研究工作,并提出了计算模型。如研究倾斜管中油水两相流不稳定性,提出了一种瞬态两流体模型来模拟管内弹状流的流动工况;通过对孔隙率波、流动湍流度、平均含气率的测量和信号分析,得到流型转化机理的特点和规律。由于多相流体在环空中的不同井段流型不一样,因而其静液压力、摩阻压降、加速压力计算非常烦锁,对这些不同流型段、不同的井段,需要用不同的计算模型。美国莫尔公司开发了一套多相流水力学软件来进行这种复杂的多相流计算,使模型研究更科学、更接近实际。
(2)复杂井筒多相流理论研究的指导作用越来越大。
复杂井筒多相流理论研究将指导水平井段设计和产能预测,能够实时地监控欠平衡钻井井下的复杂流动情况,并能够编制出智能化的软件系统,帮助钻井人员监测和控制流动参数,科学进行生产系统优化设计。相信随着科学技术的不断发展和对多相流动本质了解的不断深入,在不远的未来,必然能够利用多相流动知识促进石油工程相关理论和技术的发展。
(3)高压超高压射流破岩钻井和增产应用越来越广泛。
随着高压水射流理论、技术和设备的发展与进步,新型射流种类将不断出现,高压超高压射流紊流动力学和流动规律的研究和认识将不断深入,应用范围和领域将不断扩大。在石油工程中,高压超高压射流技术将不仅应用于辅助破岩钻井,进一步提高钻井速度,而且将应用于油气井增产改造,如水力深穿透射孔、定向喷射辅助压裂、径向水平微小井眼开采等。同时,高压水射流技术在煤炭、化工、冶金、建筑、机械、军工等十多个工业领域的水力采煤采矿、切割钻孔破碎、清洗除垢除锈等场合也有越来越广泛的应用。
水域钻探
(一)水域钻探概述
在工程地质、水文地质、工程施工钻探以及某些矿产勘探工作中,有时要在江、河或湖面上施工。由于水深及水流速的影响,就必须采取特殊的手段进行作业。一般水深在1m以内,流速不大,不受山洪影响的浅水或间歇性河流中,可用枕木垛、草袋围堰、筑岛等方法修筑机台。水深在1~2m者,可用“木马”木桩承台。水深在2~8m,水流平稳的河流或湖泊,不能使用拼船时,可采用木排、竹筏、油桶筏等;在河身较宽,水深流速较大的江河中,则根据具体情况选用木船或铁船。
特别是近些年来,某些工程和矿种亟待施工,这就要求水上钻探的技术能跟上形势的发展。目前,海洋石油勘探方面已取得很大进展,但在江、河以及湖面上进行勘探的技术远远落后于实际的要求。
水上钻探存在的主要问题是:钻船的安装、定位,保护管的下法、定位,安全设施等。
水上钻探受水位、流速、风浪、潮汐的影响,钻船可能移位,套管将随之弯曲,如不及时采取措施,不但影响钻进,而且将发生事故。因此,在新的工地进行水上钻探之前,应对现场实际情况作充分了解,收集有关水文、气象、地形,特别是河床地形等资料。
1.水文资料
(1)钻探地段的水位过程线
应根据水位流量过程曲线、流量与时间过程曲线来编制水位过程曲线。编制时应考虑最大洪水位及枯水年份曲线。
(2)水位与流速关系曲线
(3)凌汛
1)凌汛开始时间。
2)凌汛期间冰凌一般厚度、最大厚度及冰块最大面积与体积。
3)凌汛持续最长、一般及最短时间。
4)其他有关凌汛资料。如冰凌的集结、冻结情况以及凌汛结束时间等。
(4)结冰
1)结冰开始时间。
2)结冰最大与最小厚度及其最大负荷量。
3)开始融冰时间。
(5)漂浮物
流草最大、最小长度及一般长度,流草的数量和种类。
2.气象资料
(1)风
1)风的强度。最大及最小风速。
2)风的方向。大风的方向。
(2)气温及气温的变化
3.地形条件
通过对孔位的水深、河床地形情况来确定选择适合的水上钻探方法。
(二)钻探船与浅水基台的修建
1.木船钻场
木船常用于流速在3m/s以内的河流上。优点是船可就地租用,设置简单。用单船吨位约为15t的船两条(每条船长约20m、宽约3.5m)。首先将单船加固(图1-9),在舱内加底枕及支撑,上面用木梁连接各舱之支撑,接头处以扒钉钉牢。两船平行间距0.3~0.5m,如打斜孔可稍宽些。在舱面上横放4~6根梢径为20~25cm圆木、方木或小钢轨、钢管,并用钢丝绳围箍船身成为整体(图1-10),上铺严密牢固的平台板,板厚不小于5cm,用钉钉牢。钻架腿应放在枕木上,安装绞车作为紧锚绳之用。钻机、水泵、内燃机、绞车均须放在横梁上。船边设围栏,船头上宜包铁皮,以防漂流物冲击。
图1-9 单船加固示意图
1—船面;2—底枕;3—支撑;4—木梁;5—船舱隔板;6—船底
图1-10 双船结构示意图
1—圆木;2—木船;3—钢丝绳;4—蹩棍
2.铁驳船钻场
在水深流急、浪大漩涡多的大江河中,进行水上钻探时,必须使用铁驳船,其吨位约150~500t,长38~50m,宽约8~10m。单船宽度不足时可将横木悬臂伸出船外,铺满台板,以便存放器材之用。为了减少风浪影响,保持钻船的稳定,在舱内装入适量吨位的块石。
钻场一般皆设在船尾,甲板上焊有钢构架,伸出船尾2~3m,在其下部常设一小工作台,为保证安全与操作方便,钻场面积一般为7×10m2。其结构布置如图1-11、图1-12、图1-13、图1-14所示。
图1-11 150~300t铁驳船钻场布置示意图
1—角钢及工字钢支架焊接结构;2—钢架结构小工作台;3—工字钢底梁
图1-12 150~300t铁驳船钻场俯视图
1—角钢及工字钢支架焊接结构;2—钻孔孔位;3—钻机;4—工字钢底梁;5—水泵;6—铁驳船
图1-13 300~500t铁驳船钻场侧视图
1—四脚钻塔;2—钻场;3—厨房;4—宿舍;5—船员值班室
图1-14 300~500t铁驳船钻场俯视图
1—钻孔孔位;2—钻场;3—厨房;4—宿舍;5—船员值班室
3.油桶筏钻场
在小河流、水位浅、航运少和租不到合适的船时,可使用厚壁大汽油桶并联成筏,在筏上设钻场(图1-15)。油桶筏钻场需用多少油桶,必须做浮力计算;大油桶直径0.56m,高0.86m,容积约0.21m3,油桶自重约27kg,木料的浮力可不计,其需要总浮力按钻探机具材料,工作人员等总重的3倍计算以确保施工安全。油桶筏的拼装用杉木或方木以8号铅丝绑扎成两片,像双船一样,中间留出钻孔位置,上铺木板,周围要安上栏杆。
图1-15 油桶筏钻场布置示意图
1—挡板;2—U型围箍螺栓;3—厚壁油桶;4—8号铅丝;5—横杆;6—油桶;7—纵杆
采用油桶筏钻场应注意的事项:
1)漏水油桶要焊好,螺盖应加胶垫密闭。
2)杉木梢径不小于15cm,料要直,节疤要修平。
3)绑扎油桶筏要在河滩上靠水边处进行,以便下水。
4)锚绳宜固定在岸上并提离水面。
5)其他有关事项与木船钻场内容相同。
4.木笼基脚钻场
孔位在河漫滩上,平时无水,涨水时被淹,如用船常搁浅,甚至将船底顶坏。遇到这种情况可用木笼基脚上搭木梁构成钻场(图1-16)。
木笼基脚是用6根长4m左右、梢径大于12cm的圆木,做木桩埋入地层内1m以上,用毛竹片或柳条编织成笼,上面直径约0.6~1.0m,下面直径约1.5m。内装卵石或块石,外围大块石构成,每个基台需木笼基脚8~10个,上放方木、木板构成基台。
图1-16 木笼基脚示意图
1—基台;2—木笼;3—砂砾石层
(三)抛锚定位
凡采用水上漂浮钻场——木船、铁船、油桶筏等,均采用停船抛锚的方法进行稳定,以便使钻探工作顺利进行。
1.锚的选择
选择锚的类型主要是根据漂浮钻场大小、河床地质情况及其他自然条件确定,一般在峡谷河流上,河床为卵石或岩层时适用四齿锚。河床为泥沙沉积时,可用燕尾锚,尤其是大江峡谷内,使用兔耳锚、将军锚,便于插入覆盖层或基岩裂隙中,也较易起锚。有时也用石锚或混凝土锚等。
2.锚的质量
锚的质量一般可根据船的吨位、自然条件、抛锚的位置确定。当用铁锚时,其质量可参考表1-6所示。
表1-6 钻船铁锚质量参考表 (单位:kg)
3.锚绳、锚链与浮筒
(1)锚绳的直径
锚绳多采用钢丝绳,其直径以其所受拉力大小而定,可参考表1-7所示。
表1-7 钢丝绳锚绳直径参考表
(2)锚链
为了增加铁锚在河床的稳定性,锚与锚绳之间可使用一段锚链。链环直径要大于钢丝绳的直径,并注意在容易埋锚的情况下不要使用锚链。
(3)锚头绳及浮筒
凡河床为孤石、高低不平的岩层或砂性土,为防止锚卡在岩石或孤石里,或者埋入砂层中,宜采用锚头绳及水底浮筒、水面浮筒。当发现铁锚被卡埋,可绞拉锚头绳,以松动铁锚。锚头绳及浮筒拴法如图1-17所示。
图1-17 锚头绳及浮筒拴法示意图
4.抛锚
根据钻孔附近地形和水流情况,将钻船拖至适当地点。放船前,先测出河中孔位。一般用小船把主锚和前锚抛定,再用船上绞车收紧锚绳移动钻船,逐步靠近孔位,而后再抛后锚及边锚,根据岸上测量人员指挥定位。
利用地形,也可把部分锚定在岸(图1-18),如河床比较狭窄,可把4个锚全部都固定在岸(图1-19)。
抛锚可采用机动船或人力船抛锚。某局勘测队,为适应机动船进行抛锚、起锚作业,改制成自动(偏心)脱锚钩。钩的构造如图1-20所示。这种钩用主、副两根钢丝绳连接,副绳系在钩中部的一个小孔上,两根钢丝绳均拴在机动船上。抛锚时,机动船靠近钻船,将此钩移挂在机动船头水面以上,这时主绳受力,副绳不紧。机动船开到抛锚地点,只要把主绳松开,副绳自动带紧,挂钩即转动,锚即脱钩落水。这样自动脱钩抛锚,既安全又迅速,避免过去松锚绳时操作费力、锚绳随意蹦动的缺点。
图1-18 部分锚定在岸上示意图
1—锚;2—绞车;3—钻船;4—锚头绳
图1-19 4个锚都固定在岸上示意图
1—锚;2—绞车;3—钻船;4—锚绳
另外尚有拉过河绳索代替抛锚,分高空及水下拉过河绳两种(图1-21)。
图1-20 自动脱锚钩
图1-21 过河绳索代替抛锚示意图
5.锚的种类、质量及使用条件(表1-8)
表1-8 锚的种类质量及使用条件参考表
续表
6.定位
钻船抛锚后不会恰好就在要求的位置上,要将它固定到指定的位置,须进行定位工作。一般定位方法有以下几种:
(1)丈量定位法
在钻孔距岸边不远(100m以内)的条件下,可以使用绳尺、钢尺或皮尺等直接丈量。这样准确性高,且可节省时间。
(2)视距定位法
在距离较远(100~200m)、准确性要求不高的情况下可采用视距定位法。在进行工作时,钻船(或筏)上必须竖立塔尺或花杆,以便在岸上用中线处架设好的经纬仪观测。钻船上指挥人员必须与岸上观测人员取得密切联系,以便根据观测人员指示的偏上、偏下、往远、往近的信号指挥松紧锚绳直到钻船固定到指定的位置为止。
(3)交点定位法
在要求精确度高的情况下,使用交点定位法。定位时,在岸上中线之一点和三角网基线终点各设置经纬仪一架。中线上的一架观测钻船上下游位置;基线上的一架根据预先计算好的角度,观测钻船在中线上的孔位(两架经纬仪观测目标即交点),在钻船孔位竖立花杆或塔尺,也可以用钻塔顶为目标。
图1-22 交点定位示意图
船上指挥人员必须根据两处观测人员指示的信号来松紧锚绳校正钻船位置。如指示信号要钻船往左移动3m、往下游移动1m时,钻船上就立收绞左后边锚和后主锚,这时若感到吃力时,应适当放松右前边锚和前主锚,达到要求为止(图1-22)。在条件允许的情况下,可采用两部绞车同时进行收绞锚绳,以节省定位时间。
(4)六分仪辅助定位法
在钻船距离预定钻孔位置尚远时,为使钻船尽可能接近预定位置,便于进一步精确定位,可在钻船上使用六分仪确定钻船位置,直接指挥钻船移动,这样可以简化岸上和钻船上的联系。
使用这种方法时,在钻探断面上下游的两岸,应竖立明显的不同标志,其位置是经过测量的,可确定与断面控制点的相互关系,以及根据计算得出钻船上六分仪应采用的角度。
要求精度较高的定位,还需经过岸上仪器观测,用交点法定位,用六分仪辅助定位法只能使用在抛锚前确定钻船大概位置,便于抛锚,能在钻船上直接指挥钻船航行方向。
(5)定位应注意事项
1)锚未绞正前,应事先注意水流方向,钻船必须与水流方向平行,船头朝上游,否则下套管时不易校正。
2)钻船上指挥人员和岸上观测人员应充分熟悉已定的旗语或灯光信号,能正确地发出指示信号,指挥人员能正确地指挥。
3)使用旗语必须将旗展开,不得折卷,指示方向时必须将旗按规定举起,易使对方瞭望。
4)岸上观测人员必须经常注意钻船移动,并应不断用旗语通知钻船,不得随意离开经纬仪做其他工作。
5)钻船上应将有碍岸上观测的障碍物移去,把塔尺或花杆上的污泥擦抹干净。
(四)保护套管
水上钻探与陆地钻探不同,套管除了加固孔壁的作用外,还直接承受水流的冲击,起导向定向作用,同时终孔套管的孔径还要能保证采取岩心试样的足够尺寸。在水上钻探,常采用多层套管的方法,即在河床上下一层口径较大、强度较高的外层套管,通常叫做保护套管。用以保护孔壁加固套管及钻具等,免受水流冲击。
在江河中进行钻探,特别是在激流深水中钻探,一定要下入保护套管。
1.保护套管的作用
1)隔绝流水。
2)保护小径套管。
3)起导向管作用。
2.保护套管的选择
目前使用的保护套管均为厚壁、无缝外接箍的钢管。其口径分粗细两种;粗径为ϕ250~ϕ273mm,细径为ϕ180~ϕ194mm。由于粗径管过重,不好操作,挡水面积较大,已很少使用。目前多使用外径为180mm管,其强度基本能满足深水钻探的要求。当然,也要满足岩心试件的要求。一般情况如表1-9所示选用保护套管的尺寸。为了能得到较高的强度,保护套管用外接箍、尖丝扣的接头。在水深流急的情况下,接头处还应用保护夹板进行加固(图1-23)。
表1-9 选用保护套管参考表 单位:mm
图1-23 保护夹板
1—铁垫瓦;2—电焊;3—螺栓孔
3.保护套管的下入方法
(1)按保护管连接方式分类
1)单根连接下入法。单根连接下入法就是将所有下入水中的保护套管按其编号一一连接下入水中,直到设计深度。
2)整体下入法。在下管前,将所有管子在钻船上连接好,然后整体放在江(河)中。为了操作方便,可于保护管两端用水泥或其他东西堵塞,使保护管在水中有悬浮力,以便于移动及调整角度。当保护管下好后,再把水泥或其他堵塞物排掉(图1-24)。
3)连接整体下入法。连接整体下入法是一种单根连接下入法和整体下入法的混合方法(图1-25)。这种方法适用于水位浅、流速小的情况下。第一次采用单根连接法下入,在孔距很近的情况下,第二个孔则不必将所保护管起拔,只用升降机将保护管提离水底5~10m即可。
图1-24 整体下入法示意图
(2)保护管上游拉引装置
1)用船只拉引保护管。在上游选择适当吨位的木船,用铁锚固定在钻船前适当的位置,其距钻船距离,以水深而定。但必须使定位绳和保险绳与保护管的头角大于45°。并在木船上安置绞车以便松紧定位绳及保险绳(图1-26)。
图1-25 连接整体下入法
图1-26 船只拉引示意图
2)铁锚拉引保护管。将一铁锚抛在钻船前适当的位置,然后用滑车钢丝绳拉引保护管(图1-27)。
图1-27 铁锚拉引示意图
3)套管绷架拉引保护管。套管绷架是用木材制造的桁架,安装并伸出在上游孔位前的基台木上,用来拉引保护管(图1-28)。
图1-28 套管绷架拉引示意图
4.保护套管的固定
在水不深、流速不大的河流中,利用保护套管的自重即可将套管下到预定位置,并用管钻插入保护套管内,进行抽取覆盖层,使套管插入河床,根据河床地质情况,决定插入河床深度;一般使套管插入3~5m,最少插入1m。然后,在船上将管口用木板和扒钉扣牢就可稳定。但在深水河流中,下沉保护套管困难很多,在这种情况下,下保护套管必须要增设保险绳(ϕ10~16mm的钢丝绳),将保护套管向上游拉住,以防水流冲击难于校正。保险绳的根数应根据水深和流速而定,一般每隔4~8m增设一根。保险绳与保护套管间的夹角愈大愈好,否则水平拉力不够,但要求夹角很大亦有困难,一般不得小于40°~45°(流速大于2m/s)。如条件限制夹角达不到上述要求时,应采取下列办法:
1)钻船在拼装平台时,应考虑深水下保护套管拉保险绳的问题,尽可能将下套管的孔位设在船的尾部,以便增长拉保险绳的水平距离,从而增大保险绳的夹角。
2)保险绳设在船头部安设悬臂梁上,以增加其水平长度和角度。如悬臂梁承受垂直分力强度不够,可在钻船头部加设一人字扒杆将该梁吊住(图1-29)。为了防止拧动套管时,钢丝绳跟着转动缠在套管柱上,保险绳与管柱用环圈连接(图1-30)。环圈用大小两个铁圈焊成。大圈套在管接头下端,小圈用以套接保险绳。
图1-29 用保险绳下套管示意图
1—手摇绞车;2—拉架;3—套管;4—保险绳;5—变向滑轮
图1-30 环状装置示意图
1—套管;2—管接头3—环圈;4—电焊
5.保护管管鞋的选定
在下保护管以前,必须根据地层情况,水底有无覆盖层,来选定下何种保护管管鞋。
(1)无覆盖层时
可选用带有鞋钉的保护管管鞋,靠自重插入表面风化岩盘,避免保护管沿岩石滑动(图1-31)。
图1-31 管鞋
(2)有覆盖层时
可将保护管底端做成刀刃状。若用带鞋钉的管鞋,容易造成孔内事故。常用的方法有两种:
1)取(捞)砂器钻进覆盖层。用小于保护管一级的取(捞)砂器将保护管底部的覆盖层提取到地面,使保护管底部内产生空间,保护管依靠自重自行下沉直到岩石表面为止,若覆盖层太厚,应考虑下另一套小一级的保套管,以便穿过下部覆盖层和卵石层(图1-32)。
2)水冲下入法。保护管下到江(河)底后,把钻具下入孔底,用大泵量冲覆盖层,将砂冲出保护管,使保护管不断下沉。在保护管下沉时,应特别注意各定位绳及保险绳放松,否则保护管不能顺利迅速下沉,还会造成保护管向上游倾斜,严重影响下管质量。
图1-32 捞砂器钻进示意图
6.保护套管发生故障的原因
1)船位移动。水上钻探的全部设备都安装在钻船甲板上,因此从开始钻进直到完工,要求钻船不能有任何移动。钻船的位移是造成保护套管发生重大事故的主要原因。
2)大风浪的侵袭。由于大风浪的侵袭,钻船上下波动很大,若保护管未接长,当钻船上升时保护管有被压在基台木或钻船的下面而被压断或钻船受到破坏的危险。
3)水面漂浮物。洪水期间,河道上有大量木材、杂草等自上游漂来,有碰弯保护管的危险。如杂草大量挂在定位绳或保险绳上,则会增大阻力,保护管不能降下,同时上游杂草大量漂来,会使钻船发生位移和其他重大事故(图1-33)。
图1-33 水面漂浮物的影响示意图
4)定位绳和保险绳的系法不正确。如图1-34所示中a是错误的,图1-34所示中b是正确的。
图1-34 定位绳的系法
5)保护夹板未上好。工作时因夹板螺丝未上紧或因下保护管时强力的击打等,都可能使保护夹板下滑,而使保护管弯曲和折断(图1-35)。
图1-35 夹板固定法
7.下保护管注意事项
1)下管之前,应进行水深测量,根据水深,计算管长和保险绳根数,并将套管长短顺序编号。长的接在上部,短的接在下部,并备2~3根短管(0.50m、0.75m、1.00m)以备水位涨落时调整。
2)下管之前,认真检查丝扣部分是否有裂纹、破损、变形(喇叭口),保护夹板与套管接头的接触是否紧密。夹板螺栓孔是否对正,绞车安装是否牢固,升降机制动床是否良好,提引钢丝绳有无损伤以及天车等均经检查合格后才能下管。
3)安装保护夹板时,应使各夹板两翼对成一条线,事先应用一线锤由管口垂吊,做出标记。
4)保险绳必须系在保护夹板的前翼(上游)上,拉紧后使夹板两翼平行水流方向。
5)安装保险绳时,应考虑到保护套管拟插入覆盖层的深度,保险绳保护夹板均不得进入覆盖层,否则增加起拔套管的困难。保险绳有多根时,为便于识别起见,应用木牌编号,分别系在每根绳上。
6)保护套管下到河床以后,要进行定位,要求套管垂直,与水面上测定的孔位一致,必要时,可用定位绳、保险绳、绞车来校正。
7)保护套管下到河床以后,易引起水流的局部冲刷,在砂质土或砾石土壤河床中,为了使套管稳定不致受冲刷发生下沉或移位,可先将套管插入河床中,在保护套管下沉的同时,应将保险绳放松,待套管稳定后再紧。
8)船位移动易造成套管歪斜,甚至折断,应经常检查钻船的锚定情况,尤其是在大风及水位涨落急剧时,随时注意锚绳和保险绳的松紧,避免套管折损。
(五)活动孔口管和锚定水尺装置
在有潮汐河流中钻探(大江、大河入海口处,如上海黄浦江、珠江口等)每日都受到早晚潮差的影响,水位涨落很大,钻船也随着涨落,如何解决好孔口管长度的调整和孔深计算中的水位变化,直接影响到钻探工作能否顺利进行。采用活动孔口管和锚定水尺能很好地解决这个问题。
1.活动孔口管
活动孔口管也叫活塞式孔口管,由内外管套装而成,并可相对活动,外管为保护套管,内管为孔口导管。如用≥180mm为保护套管,先用管顶下沉至最低潮水位时,不致顶及钻机机台底面的位置,然后把事先准备好的一根ϕ146mm内管下入其中,其长度为最大潮差加下部插入长度和上部伸出机台面上的高度(图1-36)。为堵塞两管间的环状间隙,在内管的下端部(高潮水位时,不能外露出外管顶),缠上带油棉线绳,使其卡在已固定的铁圈内,以保持缠绕部分位置不变,其外径与保护套管内径相等,两管不宜过松或过紧,以便于安装。这种类似活塞的管结构,能使钻船涨落和保护套管出露的长短变化互不干扰,始终保持内管口在船台面上露出高度不变,从而保证了钻机正常钻进。而且可以防止江水泥砂侵入孔内,达到内外管的同心。这样钻探时不需反复做连接和卸除短保护套管的工作,从而加快了钻探进度。
2.锚定水尺
把水尺安装在钻探船上,直接测量水位变化(图1-37)。先在钻船边抛一小锚,拉出一根细钢丝绳,通过一高出钻船平台面2~3m的转向滑车,向下悬挂一个50kg重的中心锤,当水位在最低潮时,使锤底仍略高于钻船平台面,在吊锤中心插入一花杆(标尺),由于锚固定在江底不动,而钻船是随水位变化而涨落,故锤与船面就产生相对位置的变化。这样随时丈量(或读出)这个距离,就反映了当时水位的变化。此法经与岸边水尺核对,证明测量精度可靠。同时由于不需要到岸上看水标尺,节省了人力,也方便及时。
(六)水上钻探原始记录的方法和特点
水上钻船往往因水位的变化直接影响原始记录的准确性,因而要特别重视水位的变化,必须设置水位标尺,并经常进行校对(图1-38)。
图1-36 活动孔口管
1—内管;2—外管;3—缠塞;4—内管口固定
图1-37 锚定水尺安装示意图
图1-38 上水钻探记录各尺寸示意图
水位上升:机上余尺=原机上余尺-水位差;
水位下降:机上余尺=原机上余尺+水位差。
1.地面高程
即开孔地面之标高。
地面高程=水位-水深。
2.孔口高程
即保护管之标高。
孔口高程=水位+露出水面之套管长度。
3.机上余尺
1)钻进覆盖层采用捞砂或冲击钻进时是由孔口台板算起的。
2)钻进岩盘是从立轴箱水平面算起,但遇大风浪停工后再开钻时必须校正。机上余尺若涨水应减少,落水应增加。
水位上升:机上余尺=原机上余尺-水位差;
水位下降:机上余尺=原机上余尺+水位差。
4.地距
地距=水深+船高+机高(回转钻进时);
地距=水深+船高(冲击钻进时)。
5.本班进尺
水位上升:本班进尺=进尺-水位差;
水位下降:本班进尺=进尺+水位差。
6.孔深
孔深=钻具总长-(水深+船高+机高+机上余尺);
交班孔深=接班孔深+本班进尺。
(七)交通照明通信及安全
1)工作人员上下班,在水流平缓的河流,可用3t小木船摆渡。如钻船离岸不远,不影响航运交通时,可从岸上与钻船连接一条绳索,套一个索环拉住渡船,这样来回过渡比较安全。在流速比较大、河面比较宽时,应使用小机动船。交通船靠近钻船时要按先后次序上船,后再下船,不得抢上抢下。
2)在水流湍急、使用渡船有困难时,可考虑架设跨河索。在岸上固定绞车,用吊斗运送来往人员,但要特别注意安全。
3)夜间过渡,要有足够的照明设备。如需在洪水季节或水流湍急的河段进行水上钻探,夜班人员应住在船上,以防万一发生事故。
4)有条件时,应建立钻船与岸上的电话联系,以减少摆渡次数,尤其在洪水期间更为必要。摆渡时,要穿上救生衣。
5)抛锚、起锚以及做危险性较大的水上工作时,工作人员必须穿救生衣,钻船上和交通船上均须于明显处安设救生圈以备急救。
6)钻船舱底应经常检查是否漏水,并保持干燥。
7)夜间不工作或节假日停止工作时,钻船应派职工值班巡视,负责安全检查,并照常安设信号标志。
8)钻船上应备有防火设备,除在船上明显处安置灭火器外,还要有防火工具设置在固定地点,并禁止他用。
9)当遇到不能避免的巨大漂浮物或失去控制的竹木排筏或船只碰撞钻船时,应根据情况采取紧急措施,如砍断部分锚绳等以减轻事故的损失。钻船开始工作前应与岸上设立的急救站取得联系,遇事故时以便报急求援。
10)钻船上应备有轻便报话机或喊话筒、铜锣、皮鼓等,在浓雾或雨天视线不清时,钻船上应显示强烈灯光和声响信号,以引起航行船只和排筏注意。
11)特别注意水位的暴涨以免淹没平台,冲掉钻机。
12)钻进期间还应包括以下安全注意事项。①每班须设专人检查锚绳及保险绳的松紧情况,并根据水位的涨落调整其长度。②船上应有几根不同长度的短管,以便随水位涨落及时取用。③遇暴风雨钻船摆动剧烈、影响工作安全时,应停钻并提出孔内钻具。④涨水时,应有专人随时清除挂在锚绳及保险绳上的漂浮物,以减轻其负荷。⑤钻孔回水,不得流入船舱内。⑥遇6级及以上大风,即应放下钻架上的篷布,以减少风的阻力,保持钻场平稳。⑦钻进时,套管周围要以木板钉好,以防工具掉落河中。⑧放置器材,要考虑到钻船的平衡,勿使其偏重。⑨在钻塔顶设置红白旗,以引起来往船筏注意,防止发生冲撞。⑩钻船边应经常有备用小船,以便随时使用。
发生孔内事故后,严禁使用千斤顶。
“南海深水油气勘探开发关键技术及装备”重大项目是什么?
2006年,为提高我国深海油气勘探开发能力,形成深水海洋油气勘探开发产业链,提升我国海洋油气产业参与国际竞争的能力,推动我国装备制造业向深水高端领域进军,实现我国深海油气勘探开发技术实现跨越式发展,“863”计划海洋技术领域办公室在广泛、深入的战略研究和需求分析的基础上,启动了“南海深水油气资源勘探开发关键技术和装备”重大项目。项目累计投入国拨经费2.43亿元,各承担单位配套投入研发经费4.05亿元,该项目组织吸引了国土资源部、教育部、国家海洋局、中国石油集团、中国海油集团、中国石化集团、中船重工集团等部门和大型集团公司所属工程、技术研究单位、研究院所、高校累计104家单位参与攻关,参与项目研发任务的研究人员达到1690人。
该项目申请专利286项,其中发明专利149项,获得授权专利154项,发明专利45项;获得软件著作权登记65项,发表论文931篇,出版专著6部;制定国家、行业技术标准10项,建立了2个研究基地;培养了一大批我国急需的深水油气勘探开发领域的高层次人才,包括培养博士207人、硕士396人、试验设计、工程的领军人才近百人。项目成果为南海第一批4口深水油气探井及5万多公里深水油气综合地球物理勘探作业提供了技术支持。
“十二五”期间“863”计划海洋技术领域在“十一五”期间“南海深水油气勘探开发关键技术及装备”项目研发成果的基础上,已启动“深水油气勘探开发关键技术及装备”重大项目,计划投入国拨经费4.5亿元。该项目将以企业为课题牵头单位,进一步攻克系列核心关键技术,推动一批重大装备实现产业化,以期为维护我国海洋权益,推动我国油气工业走向深水和海外提供强有力的技术和装备支撑。
“南海深水油气勘探开发关键技术及装备”重大项目重点在深水油气资源勘探、钻完井、海洋工程和安全保障三个方面开展关键技术研究,完成了深水半潜式钻井平台和深水铺管系统设计建造技术的研发,为我国第一艘深水半潜式钻井平台“海洋石油981”和第一艘深水铺管船“海洋石油201”等重大装备提供了技术支撑;自主研制了我国第一套海上高精度地震勘探技术装备,初步形成了适用于南海的深水油气盆地综合地球物理勘探评价技术;研制了深水防喷器、深水钻井隔水管、深水水下井口头等深水核心装备工程样机;研发了具有我国自主知识产权的深水井身结构设计、表层钻井、井控、钻井液、固井、完井测试等关键技术,并成功应用于南海深水油气勘探开发工程;构建了深水油气工程的公共试验平台,具备4000m深水海洋工程试验的能力,新型平台的设计技术和灾害海洋环境下平台安全性评估技术等取得了重要的进展。这些成果初步形成了3000m水深深水油气勘探开发技术能力,为我国实现水深300~3000m的深水油气田的勘探开发提供了技术支撑。
中国成世界海洋石油生产大国了吗?
是的。
在中国海油的努力下,我国已经成为世界海洋石油生产大国之一,建成了完整的海洋石油工业体系,在海洋石油勘探开发、海洋石油工程技术等领域迈入世界先进行列
超深水钻井对常规钻井的影响
怎么说好呢?首先我不知道你是不是搞深海钻井亦或是搞钻井的。
首先我先给你定义一下所谓超深水钻井的概念,国内说的超深水钻井指的是水深超过1500m,而国外对于超深水的定义是水深超过3000m。
超深水钻井相对于浅海或近海亦或是陆地钻井最大的难点不在于钻探本身的难度,而是钻前,设备和工艺技术。
钻前来说就是整体的设备安装调试,这一点毋庸置疑,国外目前最大的一套超深水钻井平台完成平台搭建安装后的总吨位达到60万吨,可想而知钻前工作的难度。
再说设备,水深越大,设备则越是先进,这是毋庸置疑的,而本身超深水动辄隔离几千米的海水,隔水套管的强度,应对洋流的能力以及水下封井器的稳定性都需求百分之百的稳定性。
最后说说工艺技术,以中国目前的深水钻井技术来看还有几大问题需要突破:
1,一开固井的水泥封固技术
2,水下封井器的研发
3,应对水下斜坡,滑坡的施工方法
4,应对断层,非固定性海床的施工技术
5,深水钻井的二次井控技术
总的来说深水钻井的技术难度很大,所有陆地钻井当中的复杂问题放到海上,处理难度都要数倍相乘。
海洋钻井喷射下导管模拟实验研究
张 辉 柯 珂 王 磊
(中国石化石油工程技术研究院,北京 100101)
摘 要 水力参数是影响深水钻井表层喷射下导管作业安全顺利施工的重要因素之一。本文设计和建立了喷射下导管模拟实验系统,选取与海底浅层土性质接近的土样,对喷射下导管作业进行室内模拟实验。通过改变喷嘴直径和排量等参数,研究水力参数对导管承载力的作用规律。通过对实验结果分析发现,当作业排量和射流速度等水力参数超过某临界值时,水射流对导管壁外侧区域的土体产生过度扰动,使导管的竖向和横向承载力均发生较为明显的突降。因此在实际作业中,应当在控制水力参数提高破岩效果的同时,避免为增大导管的下入速度而使用过大的水力参数。
关键词 深水钻井 喷射下导管 模拟实验 水力参数 承载力
Simulation Experiment Research for Jetting Conductor
in Offshore Drilling Operation
ZHANG Hui,KE Ke,WANG Lei
(Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101,China)
Abstract Hydraulic parameter is one of the most important influence factors for the successful operation of jetting conductor in offshore drilling.The simulation experiment system is designed and built.With the soil sample that has the similar properties with shallow seabed soil,the laboratory experiments are performed to simulate the jetting conductor operation.By using the different jet diameters and different displacements,hydraulic parameters are changed in experiments to research the influence regulators of hydraulic parameters on bearing capacity of conductor.As is shown in experiment results,both of the horizontal and vertical bearing capacities are significantly reduced when the jet velocity or replacement is beyond the critical value.The reason is that the soil outside of the conductor is severe disturbed by the jet.The reasonable hydraulic parameters should be selected in jetting conductor operations to increase the efficiency of rock breaking while to avoid the severe disturbance to the soil outside of conductor.
Key words deepwater drilling;jetting conductor;simulation experiment;hydraulic parameters ;bearing capacity
喷射下导管技术是解决海洋钻井表层作业难题的特色技术之一。使用喷射方法下入导管,对于深水作业是一项经济有效的技术措施,不仅能够节约作业时间和成本,同时能够降低深水作业风险。近年来,随着国内深水及超深水油气资源勘探开发活动的不断增加,喷射下入导管技术在我国南海海域得到广泛应用。目前,中海油及Husky 、Devon、Chevron等国内外石油公司在中国南海区域所钻的深水及超深水井绝大多数采用喷射方法下入导管。
在喷射下导管作业过程中,水射流破土在导管下部地层破碎过程中起到重要作用。射流参数过小,导管下部土体无法得到充分破碎,将使导管的下入阻力增大;射流参数过大,对导管外部土体过度扰动,将影响导管下入后承载能力的恢复。因此,本文通过室内模拟实验,研究射流参数对导管喷射下入过程及导管承载力的影响规律,为喷射下导管水力参数设计提供依据。
1 喷射下导管作业介绍
喷射下导管作业过程中,将底部钻具组合置于导管内部,通过送入工具与导管相连,并由送入管柱送达海底。导管到达泥线处时,在依靠重力作用进入地层的同时,开泵驱动马达使钻头旋转,对导管内的土体进行破坏,并循环钻井液将岩屑从导管与钻柱的环空返出。导管下入过程中,靠钻头旋转与水力作用联合破岩,并在导管自重及送入工具的重力作用下克服导管的下入阻力进入地层。导管到达设计深度后,经过一定时间的静止,在导管与地层土之间建立足够的胶结强度,保证导管在后续作业中有足够的承载能力。
喷射下导管技术将钻井与下导管两项作业 “合二而一” 进行,一趟钻完成了钻井眼与下导管两项作业,并省去了固井环节。将这项技术应用于深水钻井导管下入作业,不仅节约了在上千米深水中多次起下钻的作业时间,同时避免了常规下导管时,容易受到深水海域环境载荷的影响而找不到井口的风险和复杂情况,以及深水海底低温带来的固井质量差等技术难题[1~4]。
2 喷射下导管作业室内模拟实验
2.1 实验总体思路
用金属管作为模拟导管,沿金属管轴向设置应变片,用小型水泵模拟导管的喷射下入过程,并记录导管的下入速度。导管下入后静置一定时间,测试导管的竖向和横向承载力。采用不同的排量、喷嘴尺寸等参数,重复进行实验,最终得出导管承载力随排量、射流出口速度等水力参数变化的规律。
2.2 模拟实验系统设计
2.2.1 实验系统整体组成
喷射下入导管室内模拟实验系统示意如图1所示,主要包括土箱、管柱系统、循环系统、加载系统、测量系统等组成部分。
2.2.2 加载系统
加载系统包括对模拟导管的竖向加载和横向加载。通过千斤顶对导管施加竖向上拔力及横向推力(图2,图3),并通过压力传感器实时采集加载过程中的压力变化值。
图1 喷射下导管模拟实验系统示意图
图2 竖向加载系统
图3 横向加载系统
2.2.3 测量系统
测量系统主要对加载过程中导管顶部的竖向和横向位移进行实时测量。通过在导管上部的铁盒处连接位移百分表(图4,图5),测量导管顶部的位移随加载载荷变化的规律。
2.3 实验参数
实验采用表1中的排量及喷嘴尺寸组合,得到不同的水力参数,分别实现:
1)保持喷嘴射流出口速度为23.58m/s,改变排量。
2)保持排量为1.07m3/h,改变喷嘴射流出口速度。
图4 竖向位移测量系统
图5 横向位移测量系统
表1 实验参数
2.4 实验步骤
实验按照以下步骤逐组进行:
1)将导管直立吊起至实验土层上方、土箱中间位置处。
2)控制大钩使管柱匀速缓慢下沉入泥,管柱入泥的前1m不开泵。
3)管柱入泥1m后开泵。开泵时先用小排量,逐渐增大至设计排量值。
4)缓缓释放大钩,使管柱在自重及射流联合作用下逐渐下沉。下放过程中保持匀速,并保证管柱的垂直性。
5)管柱到达标记位置后,停泵,并用大钩吊住管柱静止20min。
6)释放大钩,观察管柱是否发生沉降。
7)静置管柱恢复4h之后,对管柱进行承载力测试。
8)在导管顶部中心位置处施加竖向上拔力,以位移40mm作为标准,记录导管顶部的竖向位移量。
9)在导管顶部固定位置处施加横向推力,以位移40mm作为标准,记录导管顶部的横向位移量。
10)拔出导管,重新整理土样,更换实验参数,重复实验。
2.5 实验结果及分析
2.5.1 实验现象
实验过程中,观察到的实验现象如下:
1)导管能够在自重及辅助压载作用下下入指定深度。导管下入时,可见泥浆从管内返出的现象,如图6所示。初始返浆位置多在导管下入1.5 ~2m位置左右。
图6 泥浆从管内返出
2)导管下入到指定深度后吊住静止20min,释放大钩,多数情况下能够保持在下入位置。在少数排量较大的情况下,发生了导管下沉3~10cm的情况。
通过上述实验现象,证明本实验可近似模拟喷射下入导管现场作业过程。
2.5.2 实验结果分析
1)射流出口速度保持在23.6m/s不变的情况下,导管的竖向及横向承载力随排量的变化曲线如图7所示。从图7中可以看出,管柱的竖向及横向承载力随排量的增大而降低。在射流出口速度为23.6m/s的条件下,曲线上对应于排量为1.07m3/h(喷嘴尺寸为2mm)时,管柱的竖向及横向承载力均发生较为明显的突变。
图7 射流出口速度不变,排量对管柱承载力的作用规律(砂土中)
2)排量保持在1.07m3/h不变的情况下,导管的竖向及横向承载力随射流出口速度的变化曲线如图8所示。
图8 排量不变,射流出口速度对管柱承载力的作用规律
从图8中可以看出,管柱的竖向及横向承载力随射流出口速度的增大而降低。在排量为1.07m3/h的条件下,曲线上对应于射流出口速度为23.65m/s(喷嘴尺寸为2mm)时,管柱的竖向和横向承载力均发生较为明显的突变。
3 实验结果与理论计算对比
当水力喷射破碎地层的范围恰好达到导管壁位置处时,对应的射流出口速度称为射流破土的临界射流出口速度,对应的排量称为临界排量。根据淹没水射流特性、土体在射流作用下的破坏条件以及钻头水眼的位置、倾角等参数,可以计算得到在实验条件下射流破土的临界排量和临界射流出口速度随不同喷嘴尺寸的变化曲线[5~10],如图9所示。
图9 实验条件下的临界排量和临界射流出口速度
从图9(a)中可以看出,在实验中所用射流出口速度为23.6m/s的情况下,临界曲线上所对应的喷嘴直径为2mm,恰好为图7中承载力曲线上发生突变的位置;从图9(b)中可以看出,在实验中所用排量为1.07m3/s的情况下,临界曲线上所对应的喷嘴直径为2mm,恰好为图8中承载力曲线上发生突变的位置。
上述实验结果说明:当排量和射流出口速度超出理论计算得到的射流破土临界排量及临界射流出口速度时,射流将对管壁外侧的土体产生很大扰动,从而使管柱在下入后一定时间内的承载能力发生明显下降。
4 结论
1)本研究设计的喷射下入导管室内模拟实验装置,能够较好地模拟喷射下导管作业过程,有助于研究水力参数对导管承载力等性能的作用规律。
2)通过实验结果可以看出,排量、射流出口速度等参数都对导管的承载能力有很大影响,提高射流排量和出口速度,能够提高射流的破土能力,增加对导管壁附近区域地层的扰动,从而使得导管承载能力降低。
3)对照实验结果与理论计算结果可以发现,当喷射下入导管作业的水力参数达到或接近射流破土的临界水力参数时,将对导管壁周围的地层产生严重扰动,使导管的承载能力发生比较明显的突降。
4)在实际作业过程中,应当控制水力参数小于射流破土的临界水力参数,防止导管承载力发生严重下降,避免为提高导管的下入速度而使用过大的水力参数。
参考文献
[1]徐荣强,陈建兵,刘正礼,等.喷射导管技术在深水钻井作业中的应用[J].石油钻探技术,2007,35(3):19~22.
[2]张俊斌,韦红术,苏峰,等.流花4-1油田深水表层套管喷射下入研究[J].石油钻采工艺,2010,32(6):42~44.
[3]刘书杰,杨进,周建良,等.深水海底浅层喷射钻进过程中钻压与钻速关系[J].石油钻采工艺,2010,32(6):42~44.
[4]汪顺文,杨进,严德.深水表层导管喷射钻进机理研究[J].石油天然气学报,2012,34(8):157~160.
[5]沈忠厚.水射流理论与技术[M].第1版.东营:石油大学出版社,1998.
[6]Chu Eu Ho.Turbulent fluid jet excavation in cohesive soil with particular application to jet grouting[D],麻省理工大学,2005.
[7]李范山,杜嘉鸿,施小博.射流破土机理研究及其工程应用[J].流体机械,1997,25(2):26~29.
[8]马飞,宋志辉.水射流动力特性及破土机理[J].北京科技大学学报,2006,28(5):413~416.
[9]马飞,张文明.淹没水射流土层扩孔方程[J].北京科技大学学报,2005,28(5):413~416.
[10]高大钊.土力学与基础工程[M].第1版.北京:中国建筑工业出版社,1998.
我国深海钻机钻探深度刷新世界纪录,现在达到什么水平了?
我国深海钻机钻探深度达到了231m。 打破了新世界纪录。标志着我国在这一技术领域上已经达到了世界先进的水平。
深水钻井难点以及关键技术为研究主题怎么写开题报告
深水钻井难点以及关键技术为研究开题报告您好!如需要设计请回复。